
1 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 1

HDL CODE TO REALIZE ALL THE LOGIC GATES

Aim: To write VHDL code for all basic gates, simulate and verify functionality, synthesize .

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

AND:

The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are
high. A dot (.) is used to show the AND operation i.e. A.B.

OR:

The OR gate is an electronic circuit that gives a high output (1) if one or more of its
inputs are high. A plus (+) is used to show the OR operation.

NOT:

The NOT gate is an electronic circuit that produces an inverted version of the input at its
output. It is also known as an inverter. If the input variable is A, the inverted output is known as

NOT A. This is also shown as A', or A with a bar over the top.

NAND:
This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The

outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate

with a small circle on the output. The small circle represents inversion.

NOR:

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The
outputs of all NOR gates are low if any of the inputs are high. The symbol is an OR gate with a
small circle on the output. The small circle represents inversion.

EX-OR:

The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not

both, of its two inputs are high. An encircled plus sign () is used to show the EXOR operation.

2 | P a g e

e-CAD&VLSI LAB

Logic gate symbols:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Logic gate Truth Tables:

3 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Procedure:

1. Click on FPGA advantage icon on the desktop.

2. Click on file menunewproject.

3. Create a new path for the project workspace.

4. Then, go to Filenewdesign contentVHDL fileentity.

5. Now, give the name of the entity & click next, then an editor window opens,

6. Declare the input, output ports in the entity and save it.

7. Filenewdesign contentVHDL filearchitecture.

8. Now, give the name of the entity you gave before and a architecture name and click next,

then a editor window opens, write the required style of code and save it.

9. Click the project file and verify the errors by CHECK button.

10. If no errors, click on simulate button, then modelsim gets started, select the ports and give

them to “select to wave” option and type the force commands and run command ,then the

graph is displayed.

11. After that, move to design manager window, select the project file and click on

synthesize button, then Leonardo Spectrum windows gets opened, in that, click on view

RTL schematic button, the required logic diagram is displayed.

VHDL code:

AND gate:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY and1 IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY and1;

ARCHITECTURE dataflow OF and1 IS

BEGIN

4 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

c<=a and b;

END ARCHITECTURE dataflow;

OR gate:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY or1 IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY or1;

ARCHITECTURE dataflow OF or1 IS

BEGIN

c<=a or b;

END ARCHITECTURE dataflow;

NOT gate:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY not1 IS

port(a:in std_logic;

o : out std_logic);

END ENTITY not1;

ARCHITECTURE dataflow OF not1 IS

BEGIN

o<=not a;

END ARCHITECTURE dataflow;

NAND gate:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY nand1 IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY nand1;

ARCHITECTURE dataflow OF nand1 IS

BEGIN

c<=a nand b;

5 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

END ARCHITECTURE dataflow;

NOR gate:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY nor1 IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY nor1;

ARCHITECTURE dataflow OF nor1 IS

BEGIN

c<=a nor b;

END ARCHITECTURE dataflow;

XOR gate:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY xor1 IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY xor1;

ARCHITECTURE dataflow OF xor1 IS

BEGIN

c<=a xor b;

END ARCHITECTURE dataflow;

Simulations:

AND gate:

force a 0 0ns,0 10ns,1 20ns,1 30ns

force b 0 0ns,1 10ns,0 20ns,1 30ns

run 50ns

6 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

OR gate: force a 0 0ns,0 10ns,1 20ns,1 30ns

force b 0 0ns,1 10ns,0 20ns,1 30ns

run 50ns

NOT gate:

force a 0 0ns,0 10ns,1 20ns,1 30ns

force b 0 0ns,1 10ns,0 20ns,1 30ns

run 50ns

7 | P a g e

e-CAD&VLSI LAB

NOR gate:

force a 0 0ns,0 10ns,1 20ns,1 30ns

force b 0 0ns,1 10ns,0 20ns,1 30ns

run 50ns

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

NAND gate:

force a 0 0ns,0 10ns,1 20ns,1 30ns

force b 0 0ns,1 10ns,0 20ns,1 30ns

run 50ns

XOR gate:

force a 0 0ns,0 10ns,1 20ns,1 30ns

force b 0 0ns,1 10ns,0 20ns,1 30ns

run 50ns

8 | P a g e

e-CAD&VLSI LAB

Synthesis Diagrams:

AND gate:

OR gate:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

NOT gate:

9 | P a g e

e-CAD&VLSI LAB

NOR gate:

XOR gate:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

NAND gate:

Conclusion:

The VHDL code for all basic gates is written, simulated and synthesized.

10 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2

DESIGN OF 2-to-4 DECODER

Aim: To write VHDL code for 2-to-4 decoder in Behavioral modeling, Structural Modeling,

simulate and synthesize

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory : A decoder can take the form of a multiple-input, multiple-output logic circuit that

converts coded inputs into coded outputs, where the input and output codes are different e.g. n-

to-2n , binary-coded decimal decoders. Decoding is necessary in applications such as data

multiplexing, 7 segment display and memory address decoding.

Procedure: Refer to page 3

VHDL code (Behavioural Modelling using with-select):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY decoder24 IS

port(a:in std_logic_vector(1 downto 0);

f:out std_logic_vector(3 downto 0));

END ENTITY decoder24;

11 | P a g e

e-CAD&VLSI LAB

Run 40ns

Synthesis Diagrams:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ARCHITECTURE behav_with_select OF decoder24 IS

BEGIN

with a select

f <="0001" when "00",

"0010" when "01",

"0100" when "10",

"1000" when others;

END ARCHITECTURE behav_with_select;

Simulations: Force a 00 0ns,01 10ns, 10 20ns,11 30ns

VHDL code (Behavioural using case):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

12 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY decoder2x4 IS

port(a:in std_logic_vector(1 downto 0);

f:out std_logic_vector(3 downto 0));

END ENTITY decoder2x4;

ARCHITECTURE behav_when_case OF decoder2x4 IS

BEGIN

process(a)

begin

case(a) is

when "00" => f <= "0001";

when "01" => f <= "0010";

when "10" => f <= "0100";

when "11" => f <= "1000";

when others => f <= "0000";

end case;

end process;

END ARCHITECTURE behav_when_case;

Simulations:

Force a 00 0ns,01 10ns, 10 20ns,11 30ns

Run 40ns

Synthesis Diagrams:

13 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

VHDL code(Structural modelling):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY decoder_strct IS

port(a:in std_logic_vector(1 downto 0);

En:in std_logic;

f:out std_logic_vector(3 downto 0));

END ENTITY decoder_strct;

ARCHITECTURE stuctural OF decoder_strct IS

signal s,t: std_logic;

component inv1 port(I :in std_logic;o:out std_logic);

end component;

component and3 port(I0,I1,I3: in std_logic;o:out std_logic);

end component;

begin

u1:inv1 port map(a(0),s);

u2:inv1 port map(a(1),t);

u3:and3 port map(s,t,En,f(0));

u4:and3 port map(a(0),t,En,f(1));

u5:and3 port map(s,a(1),En,f(2));

u6:and3 port map(a(0),a(1),En,f(3));

END ARCHITECTURE stuctural;

Internal program and3 :

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY and3 IS

port(I0,I1,I3:in std_logic;

o: out std_logic);

END ENTITY and3;

ARCHITECTURE dataflow OF and3 IS

BEGIN

o <=I0 and I1 and I3;

END ARCHITECTURE dataflow;

14 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Simulations:

force a 00 0ns,01 10ns,10 20ns,11 30ns

force en 0 0ns,1 5ns

run 50ns

Conclusion:

The VHDL code for 2-to-4 decoder using behavioral (using with-select, when-else), Structural

model using is written, simulated and synthesized.

Synthesis Diagrams:

15 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 3

DESIGN OF 8-to-3 ENCODER

Aim: To write the VHDL code for 8-to-3 Encoder in Dataflow, Behavioral, Structural modeling

simulate and synthesize.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory : The truth table for an 8-3 binary encoder (8 inputs and 3 outputs) is shown in the

following table. It is assumed that only

one input has a value of 1 at any given

time.

Procedure: Refer to page 3

VHDL Code (using Dataflow Modelling):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY encoder8to3_df IS

port(I:in std_logic_vector(7 downto 0);

E0,E1,E2:out std_logic);

END ENTITY encoder8to3_df;

16 | P a g e

e-CAD&VLSI LAB

Synthesis diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ARCHITECTURE dataflow OF encoder8to3_df IS

BEGIN

E0 <=I(1) or I(3)or I(5) or I(7);

E1 <=I(2) or I(3)or I(6) or I(7);

E2 <=I(4) or I(5)or I(6) or I(7);

END ARCHITECTURE dataflow;

Simulation :

VHDL Code (in Behavioural Modelling using when-else Statement):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

17 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY encoder_be IS

port(I : in std_logic_vector(7 downto 0);

En : in std_logic;

E : out std_logic_vector(2 downto 0));

END ENTITY encoder_be;

ARCHITECTURE behav OF encoder_be IS

BEGIN

process(I,En)

begin

if En ='1' then

case I is

when "00000001"=> E <= "000";

when "00000010"=> E <= "001";

when "00000100"=> E <= "010";

when "00001000"=> E <= "011";

when "00010000"=> E <= "100";

when "00100000"=> E <= "101";

when "01000000"=> E <= "110";

when "10000000"=> E <= "111";

when others => E <= "UUU";

end case;

else E <= "UUU";

end if;

end process;

END ARCHITECTURE behav;

Simulation :force I 00000001 0ns,00000010 10ns,00000100 20ns,00001000

30ns,00010000 40ns,00100000 50ns,01000000 60ns,10000000 70ns

force en 0 0ns,1 5ns run 80ns

18 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

VHDL Code(in Structural Modelling):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY encoder_st IS

port(I : in std_logic_vector(7 downto 0);

E : out std_logic_vector(2 downto 0));

END ENTITY encoder_st;

ARCHITECTURE struct OF encoder_st IS

component or2 port(A,B,C,D : in std_logic;

M: out std_logic);

end component;

BEGIN

u1 :or2 port map(I(1),I(3),I(5),I(7),E(0));

u2 :or2 port map(I(2),I(3),I(6),I(7),E(1));

u3: or2 port map(I(4),I(5),I(6),I(7),E(2)) ;

END ARCHITECTURE struct;

Internal program or2:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY or2 IS

port(A,B,C,D:in std_logic;

M:out std_logic);

END ENTITY or2;

ARCHITECTURE dataflow OF or2 IS

19 | P a g e

e-CAD&VLSI LAB

Synthesis diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

BEGIN

M <= A or B or C or D;

END ARCHITECTURE dataflow;

Simulation :

force I 00000001 0ns,00000010 10ns,00000100 20ns,00001000 30ns,00010000

40ns,00100000 50ns,01000000 60ns,10000000 70ns

run 80ns

Conclusion:

The VHDL code for 8-to-3 encoder using Dataflow, Behavioural (using when-else Statement),

Structural modelling is written, simulated and synthesized.

20 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 4
DESIGN OF 8-To-1 MULTIPLEXER

Aim: To write the VHDL code for 8-to-1 multiplexer, simulate and synthesize.

Tools Required:

1. FPG Advantage

ii. Xilinx ISE 9.2

Theory:

A multiplexer (or MUX) is a device that selects one of several analog or digital input signals

and forwards the selected input into a single line. A multiplexer of 2n inputs has n select lines,

which are used to select which input line to send to the output.

Procedure: Refer to page 3

VHDL code:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY mux81 IS

port(EN_L: in std_logic;

D: in std_logic_vector(7 downto 0);

S: in std_logic_vector(2 downto 0);

Z: out std_logic);

END ENTITY mux81;

ARCHITECTURE behav OF mux81 IS

21 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

BEGIN

process(S,D,EN_L)

begin

if EN_L ='0' then

case(S) is

when "000" => Z <= D(0);

when "001" => Z <= D(1);

when "010" => Z <= D(2);

when "011" => Z <= D(3);

when "100" => Z <= D(4);

when "101" => Z <= D(5);

when "110" => Z <= D(6);

when "111" => Z<= D(7);

when others => Z <= 'U';

end case;

else Z <='U';

end if;

end process;

END ARCHITECTURE behav;

Simulation :

force EN_L 1 0ns,0 5ns

force D 10101010 0ns

force S 000 0ns,001 10ns,010 20ns,011 30ns,100 40ns,101 50ns,110 60ns,111 70ns

run 80ns

22 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

Conclusion:

The VHDL code for 8-to-1 multiplexer is written, simulated and synthesized.

23 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 5

DESIGN OF 4 BIT BINARY TO GRAY CODE CONVERSION

Aim: To write the VHDL code for 4 Bit Binary to Gray code conversion, simulate and

synthesize.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

Procedure: Refer to page 3

VHDL code :

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY binarytograycodeconverter IS

port(b:in std_logic_vector(3 downto 0);

g: out std_logic_vector(3 downto 0));

END ENTITY binarytograycodeconverter;

ARCHITECTURE dataflow OF binarytograycodeconverter IS

BEGIN

g(3)<=b(3);

g(2)<=b(3)xor b(2);

g(1)<=b(2)xor b(1);

g(0)<=b(1) xor b(0);

END ARCHITECTURE dataflow;

24 | P a g e

e-CAD&VLSI LAB

Synthesis Diagrams:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Simulations:

Force 0000 0ns,0001 5ns,0010 10ns,0011 15ns,0100 20ns,0101 25ns,0110 30ns,0111

35ns,1000 40ns,1001 45ns,1010 50ns,1011 55ns,1100 60ns,1101 65ns,1110 70ns,1111 75ns

Run 80ns

Conclusion:

The VHDL code for binary to gray code conversion is written , simulated and synthesized.

25 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(a)

DESIGN OF 4-BIT COMPARATOR

Aim: To write the VHDL code for 4-BIT COMPARATOR, simulate and synthesize using

dataflow model.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for
exampleA (A1, A2, A3, An, etc) against that of a constant or unknown value such as B (B1,

B2, B3, Bn, etc) and produce an output condition or flag depending upon the result of the

comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would

produce the following three output conditions when compared to each other.

Procedure: Refer to page 3

VHDL CODE:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY comparator4bit_df IS

port(a,b: in std_logic_vector(3 downto 0);

agtb,aeqb,altb : out std_logic);

26 | P a g e

e-CAD&VLSI LAB

Synthesis diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

END ENTITY comparator4bit_df;

ARCHITECTURE dataflow OF comparator4bit_df IS

BEGIN

aeqb <= '1' when a=b else '0';

agtb <= '1' when a>b else '0';

altb <= '1' when a<b else '0';

END ARCHITECTURE dataflow;

Simulation :

force a 0111 0ns,0101 40ns

force b 0110 0ns,0101 30ns

run 100ns

Conclusion:

The VHDL code for 4-bit Comparator using dataflow model is written, simulated and

synthesized.

27 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(b)

DESIGN OF 4-BIT COMPARATOR

Aim: To write the VHDL code for 4-BIT COMPARATOR, simulate and synthesize using

dataflow model

VHDL CODE(in Behavioural Modelling using if-elsif):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY comparator4bit_behav IS

port(a,b: in std_logic_vector(3 downto 0);

agtb,aeqb,altb : out std_logic);
END ENTITY comparator4bit_behav;

ARCHITECTURE behavioural OF comparator4bit_behav IS

BEGIN

process(a,b)
begin

if(a>b)then

agtb <='1';

aeqb <= '0';
altb <= '0';

elsif(a<b) then

agtb <= '0';

aeqb <= '0';

altb <= '1';
elsif(a=b) then

agtb <='0';

aeqb <= '1';

altb <= '0';

else

end if;

agtb<='0';
aeqb <='0';

altb <= '0';

end process;
END ARCHITECTURE behavioural;

Simulation:

force a 0111 0ns,0101 40ns

force b 0110 0ns,0101 30ns

run 60ns

28 | P a g e

e-CAD&VLSI LAB

Synthesis diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Conclusion:

The VHDL code for 4-bit comparator using dataflow model is written, simulated and

synthesized.

29 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(a)

DESIGN OF HALF ADDER

Aim: To write the VHDL code for Half adder, simulate and synthesize.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

The half adder adds two one-bit binary numbers A and B. It has two outputs, Sum S and Carry

C .

Procedure: Refer to page 3

VHDL Code (using Dataflow Modelling):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY halfadder1 IS

port(a: in std_logic;

b:in std_logic;

carry:out std_logic;

sum:out std_logic);

END ENTITY halfadder1;

ARCHITECTURE dataflow OF halfadder1 IS

BEGIN

sum <=a xor b;

carry <= a and b;

END ARCHITECTURE dataflow;

30 | P a g e

e-CAD&VLSI LAB

Synthesis Diagrams:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Simulations:

force a 0 0ns, 1 10ns,0 20ns,1 30ns

force b 1 0ns,0 10ns,1 20ns

run 50ns

Conclusion:

The VHDL code for half adder is written and simulated and synthesized.

31 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(b)

DESIGN OF FULL ADDER

Aim: To write the VHDL code for Full adder, simulate and synthesize using dataflow model.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit

full adder adds three one-bit numbers, often written as A, B, and Cin; A and B are the operands,

and Cin is a bit carried in from the next less significant stage.

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

Procedure: Refer to page 3

VHDL code (using dataflow Modelling):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY fulladder_df IS

port(A,B,C : in std_logic;

sum,carry : out std_logic);

32 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

END ENTITY fulladder_df;

ARCHITECTURE dataflow OF fulladder_df IS

BEGIN

sum <= A xor B xor C;

carry <= ((A and B) or (B and C) or (C and A));

END ARCHITECTURE dataflow;

Simulations:

Force a 0 0ns,1 40ns

Force b 0 0ns,1 20ns,0 40ns,1 60ns

Force c 0 0ns,1 10ns,0 20ns,1 30ns,0 40ns,1 50ns,0 60ns,1 70ns

Run 80ns

Synthesis diagrams:

Conclusion:

The VHDL code for full adder using Dataflow modeling is written, simulated and synthesized.

33 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(c)

DESIGN OF FULL ADDER

Aim: To write the VHDL code for Full adder, simulate and synthesize using Structural model.

Tools Required:

1. FPG Advantage

ii. Xilinx ISE 9.2

Theory :

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit

full adder adds three one-bit numbers, often written as A, B, and Cin; A and B are the operands,

and Cin is a bit carried in from the next less significant stage.

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

1 0 0 0 1

0 1 0 0 1

1 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 1 1 0

1 1 1 1 1

Procedure: Refer to page 3

VHDL Code(using Structural Modelling):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

34 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY fulladder_struct IS

port(Fx,Fy,Fcin: in std_logic;

Fsum,Fcarry : out std_logic);

END ENTITY fulladder_struct;

ARCHITECTURE struct OF fulladder_struct IS

signal s1,c1,c2:std_logic;

component HA port(A,B : in std_logic;

sum,carry : out std_logic)

end component;

BEGIN

u1: HA port map(Fx,Fy,s1,c1);

u2: HA port map(s1,Fcin,Fsum,c2);

Fcarry <= c1 or c2;

END ARCHITECTURE struct;

Internal program Halfadder(HA):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY HA IS

port(A,B : in std_logic;

sum,carry: out std_logic);

END ENTITY HA;

ARCHITECTURE dataflow OF HA IS

BEGIN

sum <= A xor B;

carry <= A and B;

END ARCHITECTURE dataflow;

Simulation:

force Fx 0 0ns,1 30ns

force Fy 0 0ns, 1 20ns,0 40ns, 1 60ns

force Fcin 0 0ns, 1 10ns,0 20ns,1 30ns,0 40ns,1 50ns,0 60ns,1 70ns

run 80ns

35 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

Conclusion:

The VHDL code for full adder using Structural modeling is written, simulated and synthesized.

36 | P a g e

e-CAD&VLSI LAB

Theory :

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit

full adder adds three one-bit numbers, often written as A, B, and Cin; A and B are the operands,

and Cin is a bit carried in from the next less significant stage.

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(d)
DESIGN OF FULL ADDER

Aim: To write the VHDL code for Full adder, simulate and synthesize using Behavioral model.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Procedure: Refer to page 3

VHDL Code(in Behavioural Modelling using if-then-else Statement):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY fulladder_be IS

port(a: in std_logic;

b: in std_logic;

c : in std_logic;

37 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

sum : out std_logic;

carry : out std_logic);

END ENTITY fulladder_be;

ARCHITECTURE behav OF fulladder_be IS

BEGIN

process(a,b,c)

begin

if(a='0' and b= '0' and c='0')

then sum <= '0';carry <= '0';

elsif(a='0' and b= '0' and c='1')

then sum <= '1';carry <= '0';

elsif(a='0' and b= '1' and c='0')

then sum <= '1';carry <= '0';

elsif(a='0' and b= '1' and c='1')

then sum <= '0';carry <= '1';

elsif(a='1' and b= '0' and c='0')

then sum <= '1';carry <= '0';

elsif(a='1' and b= '0' and c='1')

then sum <= '0';carry <= '1';

elsif(a='1' and b= '1' and c='0')

then sum <= '0';carry <= '1';

elsif(a='1' and b= '1' and c='1')

then sum <= '1';carry <= '1';

end if;

end process;

END ARCHITECTURE behav;

Simulation :

force a 0 0ns,1 40ns

force b 0 0ns,1 20ns,0 40ns,1 60ns

force c 0 0ns,1 10ns,0 20ns,1 30ns,0 40ns,1 50ns,0 60ns,1 70ns

run 80ns

38 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

VHDL Code(in Behavioural Modelling style using Case Statement):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY fulladder_behav_usingcase IS

port(a: in std_logic_vector(2 downto 0);

sum,carry :out std_logic);

END ENTITY fulladder_behav_usingcase;

ARCHITECTURE behav OF fulladder_behav_usingcase IS

BEGIN

process(a)

begin

case(a) is

when "000" =>sum<='0';carry<='0';

when "001" =>sum<='1';carry<='0';

39 | P a g e

e-CAD&VLSI LAB

Simulation :

force a 000 0ns,001 10ns,010 20ns,011 30ns,100 40ns,101 50ns,110 60ns,111 70ns

run 80ns

Synthesis Diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

when "010" =>sum<='1';carry<='0';

when "011" =>sum<='0';carry<='1';

when "100" =>sum<='1';carry<='0';

when "101" =>sum<='0';carry<='1';

when "110" =>sum<='0';carry<='1';

when "111" =>sum<='1';carry<='1';

when others =>sum<=Z';carry<='Z';

end case;

end process;

END ARCHITECTURE behav;

Conclusion:

The VHDL code for full adder using Behavioral (if-then-else, case statement) modeling is

written, simulated and synthesized.

40 | P a g e

e-CAD&VLSI LAB

Theory :

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 8(a)

DESIGN OF T-FLIPFLOP

Aim: To write the VHDL code for T-FLIPFLOP, simulate and synthesize using structural

model.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Procedure: Refer to page 3

VHDL code(in Behavioural Modelling using if-else statement):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

41 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY tflipflop IS

port(t,clk: in std_logic;

q : inout std_logic:='0');

END ENTITY tflipflop;

ARCHITECTURE behav OF tflipflop IS

BEGIN

process(clk)

begin

q<='0';

if(clk'event and clk='1')then

if(t='1') then

q <=not(q);

else

q<=q;

end if;

end if;

end process;

END ARCHITECTURE behav;

Simulation :

force t 1 0ns

force clk 1 0ns,0 10ns,1 20ns,0 30ns,1 40ns,0 50ns,1 60ns,0 70ns,1 80ns

run 80ns

42 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

Conclusion:

The VHDL code for T-flipflop is written in Behavioural Modelling(using if-else statement),

simulated and synthesized.

43 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 8(b)

DESIGN OF D-FLIPFLOP

Aim: To write the VHDL code for D-FLIPFLOP,simulate and synthesize using behavioural

model.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

Procedure: Refer to page 3

VHDL code (in Behavioural Modelling using if-else Statement):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY dflipflop IS

port(d,clk :in std_logic;

q:out std_logic);

END ENTITY dflipflop;

ARCHITECTURE behav OF dflipflop IS

44 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

BEGIN

process(clk)

begin

end if;

if (clk'event and clk='1') then

q <= d;

end process;

END ARCHITECTURE behav;

Simulation :

force d 1 0ns,0 20ns

force clk 1 0ns,0 10ns,1 20ns,0 30ns,1 40ns,0 50ns,1 60ns

run 70ns

Synthesis diagram:

Conclusion:

The VHDL code for T-flipflop is written in Behavioural Modelling(using if-else statement),

simulated and synthesized.

45 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 8(c)

DESIGN OF JK-FLIPFLOP

Aim: To write the VHDL code for JK-FLIPFLOP,simulate and synthesize using behavioral

model.

Tools Required:

1. FPG Advantage

i. Xilinx ISE 9.2

Theory :

Procedure: Refer to page 3

VHDL code:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY jkflipflop IS

port(s,r,j,k,clk : in std_logic;

q: inout std_logic;

qn: out std_logic:='1');

END ENTITY jkflipflop;

ARCHITECTURE behav OF jkflipflop IS

BEGIN

process(s,r,clk)

begin

if(r= '0' then q<= '0');

elsif s='0' then q<='1';

46 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

elsif(clk='0' and clk'event) then

q<=(j and (not q)) or ((not k)and q);

end if;

end process;

qn <= not q;

END ARCHITECTURE behav;

simulation:

Force clk 1 0ns,0 10ns,1 20ns,0 30ns,1 40ns,0 50ns,1 60ns,0 70ns

Force r 0 0ns,1 50ns

Force s 1 0ns, 0 60ns

Force j 0 0ns,1 40ns

Force k 0 0ns,1 40ns

Run 80ns

Synthesis diagram:

Conclusion:

The VHDL code for JK Fliplop using behavioural modelling(using if-else) is written, simulated

and synthesized.

47 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

CYCLE - 2

48 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 1

DESIGN RULES

Aim: To study the design rules of CMOS

Design rules are the communication link between the designer specifying requirements and the
fabricator who materializes them. Design rules are used to produce workable mask layouts from
which the various layers in silicon will be formed or patterned.

The object of a set of design rules is to allow a ready translation of circuit design concepts,
usually in stick diagram are symbolic form into actual geometry in silicon.

The first set of design rules are lambda based. These rules are straight forward and

relatively simple to occupy. They are real and chips can be fabricated from mask layout using the
lambda based rules set.

All paths in all layers will be dimensioned in lambda ‘λ’ and subsequently lambda

can be allocated and appropriate value compatible with the feature size of the fabrication
process.

N well Design Rules:

r101 Minimum well size: 12 



r102 Between wells: 12 



r110 Minimum surface: 144 2

Diffusion Design Rules:

r201 Minimum N+ and P+ diffusion width : 4 

r202 Between two P+ and N+ diffusions : 4 

r203 Extra nwell after P+ diffusion : 6 

r204 Between N+ diffusion and nwell : 6 



r205 Border of well after N+ polarization 2 



r206 Distance between Nwell and P+ polarization 6 




49 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

r210 Minimum surface : 24 2

Polysilicon Design Rules:

r301 Polysilicon width : 2 



r302 Polysilicon gate on diffusion: 2 



r303 Polysilicon gate on diffusion for high voltage MOS:

4 



r304 Between two polysilicon boxes : 3 

r305 Polysilicon vs. other diffusion : 2 

r306 Diffusion after polysilicon : 4 

r307 Extra gate after polysilicium : 3 

r310 Minimum surface : 8 2

2nd Polysilicon Design Rules

r311 Polysilicon2 width : 2 



r312 Polysilicon2 gate on diffusion: 2 





































50 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Contact Design Rules

r401 Contact width : 2 



r402 Between two contacts : 5 



r403 Extra diffusion over contact: 2 

r404 Extra poly over contact: 2 

r405 Extra metal over contact: 2 

r406 Distance between contact and poly gate: 3 




Metal & Via Design Rules

r501 Metal width : 4 



r502 Between two metals : 4 



r510 Minimum surface : 32 2

r601 Via width : 2 



r602 Between two Via: 5 



r603 Between Via and contact:-0

r604 Extra metal over via: 2 

r605 Extra metal2 over via: 2 

When r603=0, stacked via over contact is allowed

51 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Metal2 & Via2 Design Rules

r701 Metal width: 4 



r702 Between two metal2 : 4 



r710 Minimum surface : 32 2

r801 Via2 width : 2 



r802 Between two Via2: 5 

r804 Extra metal2 over via2: 2 

r805 Extra metal3 over via2: 2 



Metal 3 & Via 3 Design Rules

r901 Metal3 width: 4 



r902 Between two metal3 : 4 



r910 Minimum surface : 32 2

ra01 Via3 width : 2 



ra02 Between two Via3: 5 

ra04 Extra metal3 over via3: 2 

ra05 Extra metal4 over via3: 2 















52 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

rb01 Metal4 width: 4 



rb02 Between two metal4 : 4 



rb10Minimum surface : 32 2

rc01 Via4 width : 2 



rc02 Between two Via4: 5 

rc04 Extra metal4 over via2: 3 

rc05Extra metal5 over via2: 3 



Metal 5 & Via 5 Design Rules

rd01 Metal5 width: 8 



rd02 Between two metal5 : 8 



rd10 Minimum surface : 100 2

re01 Via5 width : 4 



re02 Between two Via5: 6 

re04 Extra metal5 over via5: 3 

re05 Extra metal6 over via5: 3 



















53 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Metal 6 Design Rules

rf01 Metal6 width: 8 



rf02 Between two metal6 : 15 



rf10 Minimum surface : 3002

Pad Design Rules

rp01 Pad width: 100 μm

rp02 Between two pads 100 μm

rp03 Opening in passivation v.s via : 5μm

rp04 Opening in passivation v.s metals: 5μm

rp05Between pad and unrelated active area : 20 μm

54 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2

BASIC LOGIC GATEs

Aim: To design the digital schematics and corresponding layouts using CMOS logic for an

AND LOGIC gate, OR LOGIC gate, NOT LOGIC gate and check the lambda based rules

using DRC and verify its functionality.

Apparatus:

 DSCH2(logic editor & simulator)

 MICROWIND 3.1(layout editor & simulator)

Theory:

AND GateS: The AND gate is an electronic circuit that gives a high output (1) only if all its
inputs are high. A dot (.) is used to show the AND operation i.e. A.B.

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.
2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

55 | P a g e

e-CAD&VLSI LAB

Timing Diagram:

Semi-custom Layout:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Transistor level design (CMOS logic):

56 | P a g e

e-CAD&VLSI LAB

Simulation:

Voltage –Time:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an AND LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

57 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

OR LOGIC GATE

OR Gate:

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are
high. A plus (+) is used to show the OR operation.

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.
2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.

4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

Transistor level design (CMOS logic):

58 | P a g e

e-CAD&VLSI LAB

Timing Diagram:

Semi-custom Layout:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

59 | P a g e

e-CAD&VLSI LAB

Simulation:

Voltage –Time:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Voltage-voltage:

60 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an OR LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

NOT LOGIC GATE

NOT Gate:

The NOT gate is an electronic circuit that produces an inverted version of the input at its output.
It is also known as an inverter. If the input variable is A, the inverted output is known as NOT A.

This is also shown as A', or A with a bar over the top.

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

2. Save the file and verify the functionality.
3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.

4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

61 | P a g e

e-CAD&VLSI LAB

Transistor level design (CMOS logic):

Timing Diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Digital Schematic Representation:

62 | P a g e

e-CAD&VLSI LAB

Simulation:

Voltage –Time:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Semi-custom Layout; Full-custom Layout:

63 | P a g e

e-CAD&VLSI LAB

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an NOT LOGIC gate

are designed and the lambda based rules using DRC are checked and verified its functionality.

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Voltage-Voltage:

64 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2(b)

NAND LOGIC GATE

Aim: To design the digital schematics and corresponding layouts using CMOS logic for an
NAND LOGIC gate and NOR LOGIC gate check the lambda based rules using DRC and
verify its functionality.

Apparatus:

 DSCH2(logic editor & simulator)

 MICROWIND 3.1(layout editor & simulator)

THEORY:

NAND: This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The
outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate

with a small circle on the output. The small circle represents inversion

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

2. Save the file and verify the functionality.
3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.

4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

65 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Transistor level design (CMOS logic):

Timing Diagram:

Semi-custom Layout:

66 | P a g e

e-CAD&VLSI LAB

Simulation:

Voltage –Time:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Full-Custom Layout:

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an NAND LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

67 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

NOR LOGIC GATE:

NOR Gate:

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs of all
NOR gates are low if any of the inputs are high.The symbol is an OR gate with a small circle on

the output. The small circle represents inversion

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.
2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

68 | P a g e

e-CAD&VLSI LAB

Timing Diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Transistor level design (CMOS logic):

69 | P a g e

e-CAD&VLSI LAB

Simulation:

Voltage –Time:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Semi-custom Layout:

70 | P a g e

e-CAD&VLSI LAB

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an NOR LOGIC gate

are designed and the lambda based rules using DRC are checked and verified its functionality.

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Voltage-voltage:

71 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2(c)

EX-OR LOGIC GATE

Aim: To design the digital schematics and corresponding layouts using CMOS logic for an EX-

OR LOGIC gate, EX-NOR LOGIC gate and check the lambda based rules using DRC and
verify its functionality.

Apparatus:

 DSCH2(logic editor & simulator)

 MICROWIND 3.1(layout editor & simulator)

THEORY:

EX-OR: The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not

both, of its two inputs are high. An encircled plus sign () is used to show the EXOR operation.

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.
2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

72 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Transistor level design (CMOS logic):

Timing Diagram:

Semi-custom Layout:

73 | P a g e

e-CAD&VLSI LAB

Voltage-voltage:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Simulation:

Voltage –Time:

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an EX-OR LOGIC

gate are designed and the lambda based rules using DRC are checked and verified its

functionality.

74 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Ex-NOR LOGIC GATE:

Ex-NOR Gate:

The 'Exclusive-NOR' gate is a circuit which will give a high output if both of its inputs
are high or low. An encircled dot sign (.) is used to show the EXNOR operation.

A B ~ (a^b)

0 0 1

0 1 0

1 0 0

1 1 1

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.
2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

75 | P a g e

e-CAD&VLSI LAB

Timing diagram:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Transistor level design (CMOS logic):

76 | P a g e

e-CAD&VLSI LAB

Simulation:

Voltage –Time:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Semi-custom Layout:

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an EX-NOR LOGIC

gate are designed and the lambda based rules using DRC are checked and verified its

functionality.

77 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 3

HALF ADDER

Aim: To design the digital schematics and corresponding layouts using CMOS logic for
HALF ADDER and check the lambda based rules using DRC and verify its functionality.

Apparatus:

 DSCH2(logic editor & simulator)

 MICROWIND 3.1(layout editor & simulator)

Theory:

The half adder adds two one-bit binary numbers A and B. It has two outputs, S and C

.

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.

4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Transistor level design (CMOS logic):

78 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Timing Diagram:

Semi-custom Layout:

79 | P a g e

e-CAD&VLSI LAB

Voltage-Voltage:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Simulation:

Voltage –Time:

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an HALF ADDER are
designed and the lambda based rules using DRC

80 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 4

SPICE Simulation and a Coding of CMOS Inverter Circuit

Aim: To write SPICE code for CMOS Inverter Circuit, Simulate and verify functionality.

Apparatus:

1. PSPICE

i. DesignLab Eval8

Theory:

In CMOS, both p and n-channel transistors are used. A schematic circuit representation of the
CMOS inverter is shown in figure. The operation of the circuit on an inverter can be explained as
follows. All voltages are referenced with respect to VSS, the ground potential. When the input

voltage VI is zero, the gate of the p-channel transistor is at VDD below the source potential,

that is, VGS=VDD. This turns on the transistor, which is turned off since VGS=0 for this transistor.

Now if the input voltage is raised to the threshold voltage level of the n-channel transistor raised
to VDD, the n-channel transistor will conduct while the p-channel transistor gets turned off,

discharging the load capacitance C to ground potential.

Procedure:

1. Start  program Design Lab Eval8  select Design manager to get Design Manager
window

2. Click on Run Text Edit window to get microsim text editor
3. Type the program, save it with experiment name.

4. Then run pspice AD, to get pspice AD window.
5. Then go to file, click on open to select the saved file

6. The selected file is simulated successfully.

7. Go to file, click Run Probe to get microsim probe window.
8. Click on Add Trace, Deselect Currents and Aliased names and click on OK to view the

frequency response.

81 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

CMOS Inverter:

Figure: CMOS Inverter:

PSPICE Code for CMOS Inverter:

*Pspice file for CMOS Inverter
*Filename=”cmos.cir”
VIN 1 0 DC 0V AC 1VOLT

VDD 3 0 DC 2.5VOLT

VSS 4 0 DC -2.5VOLT

M1 2 1 4 4 NMOS1 W=9.6U L=5.4U
M2 2 1 3 3 PMOS1 W=25.8U L=5.4U

.MODEL NMOS1 NMOS VTO=1.0 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

.MODEL PMOS1 PMOS VTO=-1.0 KP=15U
+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10
+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

.DC VIN -2.5 2.5 0.05

.TF V(2) VIN

.AC DEC 100 1HZ 100GHZ

.PROBE

.END

82 | P a g e

e-CAD&VLSI LAB

Figure: CMOS inverter transfer function

Conclusion:

The SPICE code for CMOS Inverter Circuit is written, simulated and the functionality is

verified.

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

CMOS Inverter Transfer function:

83 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 5

SPICE Simulation of Basic Analog Circuit: Differential Amplifier

Aim: To write SPICE code for Differential Amplifier, Simulate and verifyfunctionality.

Apparatus:

1. PSPICE

i. DesignLab Eval8

Theory:

Differential amplifiers are compatible with the matching properties of IC technology. The

differential amplifier has two modes of signal operation:

i. Differential mode,

ii. Common mode.

Differential amplifiers are excellent input stages for voltage amplifiers Differential amplifiers
can have different loads including:

 Current mirrors

 MOS diodes

 Current sources/sinks

 Resistors

The small signal performance of the differential amplifier is similar to the inverting amplifier in

gain, output resistance and bandwidth. The large signal performance includes slew rate and the

linearization of the transconductance. The design of CMOS analog circuits uses the relationships

of the circuit to design the dc currents and the W/L ratios of each transistor.

A differential amplifier is an amplifier that amplifies the difference between two voltages and

rejects the average or common mode value of the two voltages. Differential and common mode

voltages: v1 and v2 are called single-ended voltages. They are voltages referenced to ac ground.

The differential-mode input voltage, vID, is the voltage difference between v1 and v2. The

common-mode input voltage, vIC, is the average value of v1 and v2 .

Procedure: refer to page 79

84 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

CMOS Differential Amplifier:

Figure: General MOS Differential Amplifier: (a) Schematic Diagram, (b) Input Gate Voltages

Implementation.

85 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Figure: The Complete Differential Amplifier Schematic Diagram

PSPICE Code for CMOS Differential Amplifier:

* Filename="diffvid.cir"

* MOS Diff Amp with Current Mirror Load
*DC Transfer Characteristics vs VID

VID 7 0 DC 0V AC 1V

E+ 1 10 7 0 0.5

E- 2 10 7 0 -0.5
VIC 10 0 DC 0.65V

VDD 3 0 DC 2.5VOLT
VSS 4 0 DC -2.5VOLT

M1 5 1 8 8 NMOS1 W=9.6U L=5.4U
M2 6 2 8 8 NMOS1 W=9.6U L=5.4U

M3 5 5 3 3 PMOS1 W=25.8U L=5.4U

M4 6 5 3 3 PMOS1 W=25.8U L=5.4U

M5 8 9 4 4 NMOS1 W=21.6U L=1.2U
M6 9 9 4 4 NMOS1 W=21.6U L=1.2U

IB 3 9 220UA
.MODEL NMOS1 NMOS VTO=1 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10
+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

86 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

.MODEL PMOS1 PMOS VTO=-1 KP=15U
+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
.DC VID -2.5 2.5 0.05V

.TF V(6) VID

.PROBE

.END

CMOS Differential Amplifier Transfer function:

Conclusion:

The SPICE code for CMOS Differential Amplifier is written, simulated and the functionality is
verified.

87 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(a)

Analog Circuit Simulation (AC analysis) – Common Source Amplifier

Aim: To write SPICE code for Common Source Amplifier, Simulate and verify the

functionality.

Apparatus:

1. PSPICE

i. DesignLab Eval8

Theory:

A common Source amplifier is one of three basic single-stage MOSFET amplifier topologies,
typically used as a voltage or transconductance amplifier. The easiest way to tell if a MOSFET is

common source, common drain, or common gate is to examine where the signal enters and

leaves. The remaining terminal is what is known as “common”. The signal enters the gate, and

exits the drain. The only terminal is the source. This is a common-source MOSFET. The

analogous bipolar junction transistor circuit is the common-emitter amplifier.

The common-source (CS) amplifier may be viewed as a transconductance amplifier or as a

voltage amplifier. As a transconductance amplifier, the input voltage is seen as modulating the

current going to the load. As a voltage amplifier, input voltage modulates the amount of current

flowing through the mosfet, changing the voltage across the output resistance according to

Ohm’s law. However, the MOSFET device’s output resistance typically not high enough for a

reasonable transconductance amplifier (ideally infinite), nor low enough for a decent voltage

amplifier (ideally zero). Another major drawback is the amplifier’s limited high-frequency

response. Therefore, in practice the output often is routed through either a voltage follower

(common-drain stage), or a current follower (common-gate stage), or a current follower

(common-gate stage) to obtainmore output and frequency characteristics. The CS-CG

combination is called a cascade amplifier.

 Procedure: refer to page 79

88 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

Common Source Amplifier:

PSPICE Code for CMOS Common Source Amplifier:

*PSpice file for NMOS Inverter with PMOS Current Load
*Filename="Lab3.cir"

VIN 1 0 DC 0VOLT AC 1V
VDD 3 0 DC 2.5VOLT

VSS 4 0 DC -2.5VOLT

VG 5 0 DC 0VOLT
M1 2 1 4 4 MN W=9.6U L=5.4U

M2 2 5 3 3 MP W=25.8U L=5.4U

.MODEL MN NMOS VTO=1 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

.MODEL MP PMOS VTO=-1 KP=15U

+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6
+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
*Analysis

.DC VIN -2.5 2.5 0.05

.TF V(2) VIN

.PROBE

.END

89 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

CMOS Common Source DC analysis:

CMOS Common Source AC analysis:

Conclusion:

The PSPICE code for CMOS Common Source Amplifier is written, simulated (AC analysis) and

the functionality is verified.

90 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(b)

Analog Circuit Simulation (AC analysis) – Common Drain Amplifier

Aim: To write SPICE code for Common Drain Amplifier, Simulate and verify the functionality.

Apparatus:

1. PSPICE

ii. DesignLab Eval8

Theory:

A common-drain amplifier, also known as a source follower, is one of three basic single-stage

MOSFET amplifier topologies, typically used as a voltage buffer. In the circuit the gate terminal

of the transistor serves as the input, the source is the output, and the drain is common to both

(input and output), hence its name. The analogous bipolar junction transistor circuit is the

common-collector amplifier.

In addition, this circuit is used to transform impedances. For example, the Thévenin resistance of

a combination of a voltage follower driven by a voltage source with high Thévenin resistance is

reduced to only the output resistance of the voltage follower, a small resistance. That resistance

reduction makes the combination a more ideal voltage source. Conversely, a voltage follower

inserted between a driving stage and a high load (i.e. a low resistance) presents an infinite

resistance (low load) to the driving stage, an advantage in coupling a voltage signal to a large

load.

Procedure: refer to page 79

91 | P a g e

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

Common Drain Amplifier:

PSPICE Code for CMOS Differential Amplifier:

*PSpice file for NMOS Inverter with PMOS Current Load
*Filename="Lab3.cir"

VIN 1 0 DC 4.75VOLT AC 1V
VDD 3 0 DC 5VOLT

VSS 4 0 DC 0VOLT

VG2 5 0 DC 2.5VOLT

M1 3 1 2 4 MN W=9.6U L=5.4U
M2 2 5 4 4 MN W=9.6U L=5.4U

.MODEL MN NMOS VTO=1 KP=40U
+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10
+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

.MODEL MP PMOS VTO=-1 KP=15U

+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9

*Analysis

.DC VIN 0 5 0.05

.TF V(2) VIN

.AC DEC 100 1HZ 100GHZ

.PROBE

.END

92 | P a g e

e-CAD&VLSI LAB

Common Drain Amplifier AC analysis:

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Common Drain Amplifier DC analysis:

Conclusion:

The PSPICE code for CMOS Common Drain Amplifier is written, simulated (AC analysis) and
the functionality is verified.

