4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 1

HDL CODE TO REALIZE ALL THE LOGIC GATES

Aim: To write VHDL code for all basic gates, simulate and verify functionality, synthesize .

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

AND:
The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are
high. A dot (.) is used to show the AND operation i.e. A.B.

OR:
The OR gate is an electronic circuit that gives a high output (1) if one or more of its
inputs are high. A plus (+) is used to show the OR operation.

NOT:

The NOT gate is an electronic circuit that produces an inverted version of the input at its
output. It is also known as an inverter. If the input variable is A, the inverted output is known as
NOT A. This is also shown as A', or A with a bar over the top.

NAND:

This is a NOT-AND gate which is equal to an AND gate followed by a NOT gate. The
outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate
with a small circle on the output. The small circle represents inversion.

NOR:

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The
outputs of all NOR gates are low if any of the inputs are high. The symbol is an OR gate with a
small circle on the output. The small circle represents inversion.

EX-OR:
The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not
both, of its two inputs are high. An encircled plus sign () is used to show the EXOR operation.

1|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Logic gate Truth Tables:

2 Input AND gate 2 Input NAND gate
A, B A A, B AB
1 o 1 1 o 1
a 1 a a 1 1
1 o a 1 o 1
1 1 1 1 1 a

2 Input OR gate 2 Input NOR gate
A B A+E A B A+B
a o a o a 1
a 1 1 o 1 o
1 o 1 1 d 0
1 1 1 1 1 o

2 Input EXOR gate
A B ABEB

NOT gate a o a
A, A a 1 1
a 1 1 d 1
1 a 1 1 a

Logic gate symbols:

A A

AND OR
A A -
| Jp——AB 5] So—A®
NAND NOR

5] >——aee

2|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Procedure:
1. Click on FPGA advantage icon on the desktop.
2. Click on file menu->new->project.
3. Create a new path for the project workspace.
4. Then, go to File>new->design content>VHDL file>entity.
5. Now, give the name of the entity & click next, then an editor window opens,
6. Declare the input, output ports in the entity and save it.
7. File->new->design content->VHDL file->architecture.

8. Now, give the name of the entity you gave before and a architecture name and click next,
then a editor window opens, write the required style of code and save it.

9. Click the project file and verify the errors by CHECK button.

10. If no errors, click on simulate button, then modelsim gets started, select the ports and give
them to “select to wave” option and type the force commands and run command ,then the
graph is displayed.

11. After that, move to design manager window, select the project file and click on
synthesize button, then Leonardo Spectrum windows gets opened, in that, click on view
RTL schematic button, the required logic diagram is displayed.

VHDL code:
AND gate:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY andl IS

port(a,b:in std_logic;

c.out std_logic);

END ENTITY andl;
ARCHITECTURE dataflow OF and1 IS
BEGIN

3|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual

c<=aand b;
END ARCHITECTURE dataflow;
OR gate:
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY orl IS

port(a,b:in std_logic;

c.out std_logic);

END ENTITY orl;
ARCHITECTURE dataflow OF orl IS
BEGIN

c<=aorb;
END ARCHITECTURE dataflow;

NOT gate:
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY notl IS

port(a:in std_logic;

0 : out std_logic);

END ENTITY notl;
ARCHITECTURE dataflow OF notl IS
BEGIN

o<=not g;
END ARCHITECTURE dataflow;

NAND gate:
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY nandl IS
port(a,b:in std_logic;

c:out std_logic);

END ENTITY nandi;
ARCHITECTURE dataflow OF nandl IS
BEGIN

c<=anand b;

4|Page

Sidhhartha Institute of Technology & Sciences

e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

END ARCHITECTURE dataflow;

NOR gate:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY norl IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY nor1,
ARCHITECTURE dataflow OF norl IS
BEGIN

c<=anor b;
END ARCHITECTURE dataflow;

XOR gate:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY xorl IS

port(a,b:in std_logic;

c:out std_logic);

END ENTITY xor1,
ARCHITECTURE dataflow OF xorl IS
BEGIN

c<=a xor b;
END ARCHITECTURE dataflow;

AND gate:

force a 0 Ons,0 10ns,1 20ns,1 30ns
force b 0 Ons,1 10ns,0 20ns,1 30ns
run 50ns

5|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

5 20ns

Cursor 1

OR gate: force a 0 Ons,0 10ns,1 20ns,1 30ns
force b 0 Ons,1 10ns,0 20ns,1 30ns
run 50ns

5 20 ns

Cursor 1

NOT gate:

force a 0 Ons,0 10ns,1 20ns,1 30ns
force b 0 Ons,1 10ns,0 20ns,1 30ns
run 50ns

Cursar 1

6|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

NAND gate:

force a 0 Ons,0 10ns,1 20ns,1 30ns
force b 0 Ons,1 10ns,0 20ns,1 30ns
run 50ns

5 20ns 40 ns

NOR gate:

force a 0 Ons,0 10ns,1 20ns,1 30ns
force b 0 Ons,1 10ns,0 20ns,1 30ns
run 50ns

5 20 ns 40 ns

XOR gate:

force a 0 Ons,0 10ns,1 20ns,1 30ns
force b 0 Ons,1 10ns,0 20ns,1 30ns
run 50ns

7|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

20 ns 40 ns

Synthesis Diagrams:
AND gate:

— 0

NOT gate:

8|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

NAND gate:

aD inf0 N t
bD in1_/,p_Dou C

NOR gate:

1) i”
bD I

XOR gate:

L/) Ot
]
b_/]

The VHDL code for all basic gates is written, simulated and synthesized.

9|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2
DESIGN OF 2-to-4 DECODER

Aim: To write VHDL code for 2-to-4 decoder in Behavioral modeling, Structural Modeling,
simulate and synthesize

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory : A decoder can take the form of a multiple-input, multiple-output logic circuit that
converts coded inputs into coded outputs, where the input and output codes are different e.g. n-
to-2n , binary-coded decimal decoders. Decoding is necessary in applications such as data
multiplexing, 7 segment display and memory address decoding.

[— = = A 2-to-4 line single bit decoder =— =— =— = Truth Table

|
An | 1 I Ay Ag|Ds D2 Dy Dy
e L J

J 0 | o o | 0
.

I

| | 1]] 1 L1} [1]

| % I D T T T R
I
I

} Minterm Equations

] I
I
I

R

D —

D= Aj-An

Dl E‘AU

b———,—_—_rF - ! D= Ay Ag

Procedure: Refer to page 3

VHDL code (Behavioural Modelling using with-select):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY decoder24 IS
port(a:in std_logic_vector(1 downto 0);
f:out std_logic_vector(3 downto 0));
END ENTITY decoder24;

10| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ARCHITECTURE behav_with_select OF decoder24 1S
BEGIN
with a select
f <="0001" when "00",
"0010" when "01",
"0100" when "10",
"1000" when others;
END ARCHITECTURE behav_with_select;

Simulations: Force a 00 Ons,01 10ns, 10 20ns,11 30ns

Run 40ns

0001] 100 1000

5 20 ns 40 ns
Cursor 1 o0 ns

Synthesis Diagrams:

in[0]

ot [[3:0]

a[1:0][> data[1:0] eq[3:0]
decoder 2

VHDL code (Behavioural using case):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

11| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY decoder2x4 IS
port(a:in std_logic_vector(1 downto 0);
f:out std_logic_vector(3 downto 0));
END ENTITY decoder2x4;
ARCHITECTURE behav_when_case OF decoder2x4 IS
BEGIN
process(a)
begin
case(a) is
when "00" => f <="0001";
when "01" => f <="0010";
when "10" => f <="0100";
when "11" => f <="1000";
when others => f <= "0000";
end case;
end process;
END ARCHITECTURE behav_when_case;

Simulations:

Force a 00 Ons,01 10ns, 10 20ns,11 30ns
Run 40ns

- 4 decoderZxdfa -Ma Data- o0 1 10 11

[010 100 1000

5 20 ns 40 ns

Cursor 1

Synthesis Diagrams:

a[1:01 [>———]data[1:0] eq[3:0]——— > [3:0]

decoder_2

12| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

VHDL code(Structural modelling):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY decoder_strct IS
port(a:in std_logic_vector(1 downto 0);
En:in std_logic;
f:out std_logic_vector(3 downto 0));
END ENTITY decoder_strct;
ARCHITECTURE stuctural OF decoder_strct IS
signal s,t: std_logic;
component inv1 port(l :in std_logic;o:out std_logic);
end component;
component and3 port(10,11,13: in std_logic;o:out std_logic);
end component;
begin
ul:invl port map(a(0),s);
u2:invl port map(a(1),t);
u3:and3 port map(s,t,En,f(0));
u4:and3 port map(a(0),t,En,f(1));
u5:and3 port map(s,a(1),En,f(2));
u6:and3 port map(a(0),a(1),En,f(3));
END ARCHITECTURE stuctural;

Internal program and3 :
LIBRARY ieee;

USE ieee.std_logic_1164.all,
USE ieee.std_logic_arith.all;
ENTITY and3 IS

port(10,11,13:in std_logic;

o0: out std_logic);

END ENTITY and3;
ARCHITECTURE dataflow OF and3 IS
BEGIN

0 <=l0and I1 and 13;
END ARCHITECTURE dataflow;

13| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

force a 00 Ons,01 10ns,10 20ns,11 30ns
force en 0 Ons,1 5ns
run 50ns

010 100 1000

il
@ Jdecoder _strct/t

o 20 ns 40 ns 60T
Synthesis Diagrams:
N[0
i out in[O :
= in[1 > f[3:0]
. L in[1
in[O] out
s out im0
1N
in[1] 1 fn 1 out
out in[O
in[O]
= D ?n“] out
al1:0] [_>— in[0] —
,£|>Oout - out
s _in

Conclusion:

The VHDL code for 2-to-4 decoder using behavioral (using with-select, when-else), Structural
model using is written, simulated and synthesized.

14| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 3
DESIGN OF 8-to-3 ENCODER

Aim: To write the VHDL code for 8-to-3 Encoder in Dataflow, Behavioral, Structural modeling
simulate and synthesize.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory : The truth table for an 8-3 binary encoder (8 inputs and 3 outputs) is shown in the

following table. It is assumed that only
one input has a value of 1 at any given
time. inputs outputs
A7/[a6][a5][a4]a3]a2][a1][a0]v2][y1[v0
E N 8 O O N O
o o o o Jo Jo it o o Jo =
o o fo oo filoTofo]tlo]
o o o o |r oo o o fr]f]
E O O O S O
b Jo 1 o Jo Jofo Jo Jt o -
o [t folfofofolfoTo Jt]tlo]
N N O N O N O
Procedure: Refer to page 3
VHDL ing Dataflow Modelling):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY encoder8to3_df IS
port(l:in std_logic_vector(7 downto 0);
EO0,E1,E2:0ut std_logic);
END ENTITY encoder8to3_df;

15| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ARCHITECTURE dataflow OF encoder8to3_df IS
BEGIN

EO <=I(1) or I(3)or I(5) or I(7);

E1l <=I1(2) or I(3)or I(6) or I(7);

E2 <=I1(4) or I(5)or 1(6) or I(7);
END ARCHITECTURE dataflow;

Simulation :

0000001 000001 0000011 0000100 00aa1ol 00noLl 0000111
v
v
v
v
v
v
v
v
||I£Un;||| |||2lun;||| III:IBUHSIIII |||4|'0n;||| IIIS\UHS\\\I IIIéunsllll III_:I‘Un;III IIIS\UHS\\
Synthesis diagram:
in[1
[7:0] f”[o]) ot infO] / .
Ll
ol in[1]) o out
in[1]) [>EO
] out in[0] il out
in[0]) out in[0]) [>E1
in[1])
in[1] o out
in[0] out in[0]) 3=
.) out imm)
in[1]

VHDL Code (in Behavioural Modelling using when-else Statement):
LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

16 |Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY encoder_be IS
port(l : in std_logic_vector(7 downto 0);
En :in std_logic;
E : out std_logic_vector(2 downto 0));
END ENTITY encoder_be;
ARCHITECTURE behav OF encoder_be IS
BEGIN
process(l,En)
begin
if En ="1"then
case | is
when "00000001"=> E <="000";
when "00000010"=> E <="001";
when "00000100"=> E <="010";
when "00001000"=> E <="011";
when "00010000"=> E <="100";
when "00100000"=> E <="101";
when "01000000"=> E <="110";
when "10000000"=> E <="111";
when others => E <= "UUU";
end case;
else E <="UUU";
end if;
end process;
END ARCHITECTURE behav;
Simulation :force 1 00000001 0Ons,00000010 10ns,00000100 20ns,00001000
30ns,00010000 40ns,00100000 50ns,01000000 60ns,10000000 70ns

force en 0 Ons,1 5ns run 80ns

“

0000001 0000010 00001 00 000 1000 0010000 01 00000! 1000000

>
>
v
>
v
>
>
>
N 4
=
>
v
>

01 10 11 100 101 110 111

L L L L L L L L L L L
i0ns 20 ns 30ns 40 ns S0ns B0 ns 70 ns a0ns

17 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual

Synthesis diagram:

1
I[7:0] [_=——fp—" out
En D im0
inf1]

- in[0] out

Sidhhartha Institute of Technology & Sciences

i n[1] out inf[0]

in[1 .
- out inf1 .
in ot i out g
in[0
inf0 .
out inf0

in[1 . out in out
in[1

inf0

in[1

VHDL Code(in Structural Modelling):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY encoder_st IS
port(l : in std_logic_vector(7 downto 0);
E : out std_logic_vector(2 downto 0));
END ENTITY encoder_st;
ARCHITECTURE struct OF encoder_st IS
component or2 port(A,B,C,D : in std_logic;
M: out std_logic);
end component;
BEGIN
ul :or2 port map(1(2),1(3),1(5),1(7),E(0));
u2 :or2 port map(1(2),1(3),1(6),1(7),E(1));
u3: or2 port map(1(4),1(5),1(6),1(7),E(2)) ;
END ARCHITECTURE struct;

Internal program or2:
LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY or2 IS
port(A,B,C,D:in std_logic;
M:out std_logic);
END ENTITY orz;
ARCHITECTURE dataflow OF or2 IS

18| Page

{ > E[2:0]

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

BEGIN
M<=AorBorCorD;
END ARCHITECTURE dataflow;

force | 00000001 Ons,00000010 10ns,00000100 20ns,00001000 30ns,00010000
40ns,00100000 50ns,01000000 60ns,10000000 70ns
run 80ns

0000001 000010 0000100 001000 0010000 0100000 1000000,

v
v
v
v
v
v
v
v

01 0 11 100 101 110 111

R

R

R L L L L D L
10ns 20ns 30 ns 40 ns 50 ns 60 ns 70 ns 80 ns

E[2:0]

The VHDL code for 8-to-3 encoder using Dataflow, Behavioural (using when-else Statement),
Structural modelling is written, simulated and synthesized.

19| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 4
DESIGN OF 8-To-1 MULTIPLEXER

Aim: To write the VHDL code for 8-to-1 multiplexer, simulate and synthesize.

Tools Required:

1. FPG Advantage
il Xilinx ISE 9.2

Theory:

A multiplexer (or MUX) is a device that selects one of several analog or digital input signals
and forwards the selected input into a single line. A multiplexer of 2" inputs has n select lines,
which are used to select which input line to send to the output.

—5
_EE
15 Mux
15 B — 1
—5
—&
— &
A B C
Xy 2

Procedure: Refer to page 3
VHDL code:

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY mux81 IS

port(EN_L.: in std_logic;

D: in std_logic_vector(7 downto 0);
S:in std_logic_vector(2 downto 0);
Z:out std_logic);

END ENTITY mux81,;

ARCHITECTURE behav OF mux81 IS

20| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

BEGIN
process(S,D,EN_L)
begin
if EN_L ='0" then
case(S) is
when "000" => Z <= D(0);
when "001" => Z <= D(1);
when "010" => Z <= D(2);
when "011" => Z <= D(3);
when "100" => Z <= D(4);
when "101" => Z <= D(5);
when "110" => Z <= D(6);
when "111" => Z<= D(7);
when others => Z <="'U’;
end case;
else Z <='U;;
end if;
end process;
END ARCHITECTURE behav;

Simulation :

force EN_L 1 0Ons,0 5ns
force D 10101010 Ons

Sidhhartha Institute of Technology & Sciences

force S 000 Ons,001 10ns,010 20ns,011 30ns,100 40ns,101 50ns,110 60ns,111 70ns

run 80ns

1030101

[u]x]

01

10 11 100 101 110 111

21| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

D[7:01[> D > 7
EN L| >

s[:01[>—n =

Conclusion:

The VHDL code for 8-to-1 multiplexer is written, simulated and synthesized.

22| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 5
DESIGN OF 4 BIT BINARY TO GRAY CODE CONVERSION

Aim: To write the VHDL code for 4 Bit Binary to Gray code conversion, simulate and
synthesize.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

The difference between the Gray Code and the regular binary code is that the
Gray Code varies only 1 bit from entry to the next entry. The conversion between
Gray Code and binary code are done by using Karnaugh Map. By using this method,
the conversion can be done simply with exclusive-OR gates.

Procedure: Referto page 3
VHDL code :

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY binarytograycodeconverter 1S

port(b:in std_logic_vector(3 downto 0);

g: out std_logic_vector(3 downto 0));

END ENTITY binarytograycodeconverter;
ARCHITECTURE dataflow OF binarytograycodeconverter 1S
BEGIN

9(3)<=b(3);

g(2)<=b(3)xor b(2);

g(1)<=b(2)xor b(1);

g(0)<=b(1) xor b(0);
END ARCHITECTURE dataflow;

23| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Force 0000 Ons,0001 5ns,0010 10ns,0011 15ns,0100 20ns,0101 25ns,0110 30ns,0111
35ns,1000 40ns,1001 45ns,1010 50ns,1011 55ns,1100 60ns,1101 65ns,1110 70ns,1111 75ns
Run 80ns

&

001 010 011 100 101 110 S 0 X L 1 A L. D L S V O S 1 D 1 01

-V

001 011] 11d 111 101 100 100 ol it e oo ol 1001 J1600

e S

10ns 20ns 3 ns 4l ns Slns 60 ns 70ns 8l ns

Synthesis Diagrams:

D‘D“t 4+ > g[3:0]

out

b[3:0]

L

out

The VHDL code for binary to gray code conversion is written , simulated and synthesized.

24| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(a)
DESIGN OF 4-BIT COMPARATOR

Aim: To write the VHDL code for 4-BIT COMPARATOR, simulate and synthesize using
dataflow model.

Tools Required:
1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

Binary Binary

Inputs A Inputs B

Ay Aq Az Az By B; Bz B
(LSB) (MSE) (LSB) (MSE)
A<B }—= _
4-bit Magnitude A=B |, Comparison
Comparator ASB | OulPuts

The purpose of a Digital Comparator is to compare a set of variables or unknown numbers, for
exampleA (Al, A2, A3, An, etc) against that of a constant or unknown value such as B (B1,

B2, B3, Bn, etc) and produce an output condition or flag depending upon the result of the
comparison. For example, a magnitude comparator of two 1-bits, (A and B) inputs would
produce the following three output conditions when compared to each other.

A>B, A=B, A<B
Procedure: Refer to page 3

VHDL CODE:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY comparator4bit_df IS
port(a,b: in std_logic_vector(3 downto 0);
agtb,aeqgb,altb : out std_logic);

25| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

END ENTITY comparator4bit_df;
ARCHITECTURE dataflow OF comparator4bit_df IS
BEGIN
aeqgb <="1'when a=b else 0}
agtb <="1" when a>b else ‘0
altb <="1"when a<b else '0";
END ARCHITECTURE dataflow;
Simulation :
force a 0111 Ons,0101 40ns
force b 0110 Ons,0101 30ns
run 100ns

@ [comparatordbic_dffagth
v

100 ns

Synthesis diagram:

al3:0

d
) > tb
b[3:0] [——p—tRL:0l [> ag
a[3:01_—1—¢
al3:0
b[3:0 S > altb

al[3:0 d
bES:Ok =) [>aeqgb

The VHDL code for 4-bit Comparator using dataflow model is written, simulated and
synthesized.

nclusion:

26| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(b)
DESIGN OF 4-BIT COMPARATOR

Aim: To write the VHDL code for 4-BIT COMPARATOR, simulate and synthesize using
dataflow model

VHDL CODE(in Behavioural Modelling using if-elsif):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY comparatordbit_behav IS

port(a,b: in std_logic_vector(3 downto 0);

agtb,aeqgb,altb : out std_logic);

END ENTITY comparator4bit_behav;
ARCHITECTURE behavioural OF comparator4bit_behav 1S

BEGIN
process(a,b)
begin
if(a>b)then

agtb <="1",
aegb <="'0"
altb <=0

elsif(a<b) then
agtb <="'0"
aegb <="'0}
altb <=1

elsif(a=b) then
agtb <='0";
aeqb <="1%
altb <=0

else
agtb<='0";
aeqb <=0
altb <="0;

end if;

end process;
END ARCHITECTURE behavioural,

Simulation:

force a 0111 Ons,0101 40ns
force b 0110 Ons,0101 30ns
run 60ns

27 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

0111 101

o110 101

v
@ lcomparatorbit_behavfagth |0
v
il

5 20ns 40 ns &0 ns

[0 rs]

Synthesis diagram:

infd]

in[ﬂ) out inDouut [T f*\-, Daltb
b[3:0] [gl |

a[3:0] ﬁ—””

al3:0]

mam(i}j}d —_>aedqb
[»agth

Conclusion:
The VHDL code for 4-bit comparator using dataflow model is written, simulated and
synthesized.

28| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(a)
DESIGN OF HALF ADDER

Aim: To write the VHDL code for Half adder, simulate and synthesize.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

The half adder adds two one-bit binary numbers A and B. It has two outputs, Sum S and Carry
C.

Impat Outpuat

A B - &
€0 (4] 4] 8]
0 1 1} 1
1 L a] 1
1 1 1 0

Truth table

Procedure: Refer to page 3

VHDL Code (using Dataflow Modelling):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY halfadderl IS
port(a: in std_logic;
b:in std_logic;
carry:out std_logic;
sum:out std_logic);
END ENTITY halfadderl;
ARCHITECTURE dataflow OF halfadderl IS
BEGIN
sum <=a xor b;
carry <=aand b;
END ARCHITECTURE dataflow;

29| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

force a 0 Ons, 1 10ns,0 20ns,1 30ns
force b 1 Ons,0 10ns,1 20ns
run 50ns

P halfadderfcarry

20 ns 40 ns [}

Synthesis Diagrams:

JO)
?

Conclusion:

The VHDL code for half adder is written and simulated and synthesized.

30| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(b)
DESIGN OF FULL ADDER

Aim: To write the VHDL code for Full adder, simulate and synthesize using dataflow model.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :
A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit

full adder adds three one-bit numbers, often written as A, B, and Ciy; A and B are the operands,
and Cinis a bit carried in from the next less significant stage.

Inputs Outputs
A B Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

A full adder can be implemented in many different ways such as with a custom transistor-level circuit or composed of other gates.

One example implementation s with S = A) B @ Cy, and Gy = (4 B) +(Ciy - (49 B))

Procedure: Refer to page 3

VHDL code (using dataflow Modelling):
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY fulladder_df IS
port(A,B,C : in std_logic;
sum,carry : out std_logic);

31| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

END ENTITY fulladder_df;

ARCHITECTURE dataflow OF fulladder_df IS

BEGIN

sum <= A xor B xor C;
carry <= ((Aand B) or (B and C) or (C and A));
END ARCHITECTURE dataflow;

Simulations:
Force a 0 Ons,1 40ns
Force b 0 Ons,1 20ns,0 40ns,1 60ns
Force ¢ 0 Ons,1 10ns,0 20ns,1 30ns,0 40ns,1 50ns,0 60ns,1 70ns
Run 80ns

Sidhhartha Institute of Technology & Sciences

LI T I O B A O
10ns

(N} [[
2l ns

[} [[N
3 ns

11 e [
40ns

[} e [}
a0 ns

[N} e [}
6l ns

[} e [1
70ns 0 ns

Synthesis diagrams:

in[0]

cl> _ “out in[1]
|n[1]—/ inlo] }
in[1
?n[o] Yot in[1] . -
1M /
in[o] } = ?mo]
11
in[0
Al > ?HH out
11
B[_—1 in[o] :
in[1] I

U™ carry

sUm

The VHDL code for full adder using Dataflow modeling is written, simulated and synthesized.

32| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(c)
DESIGN OF FULL ADDER

Aim: To write the VHDL code for Full adder, simulate and synthesize using Structural model.

Tools Required:

1. FPG Advantage
. Xilinx ISE 9.2

Theory :
A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit

full adder adds three one-bit numbers, often written as A, B, and Ci,; A and B are the operands,
and Cinis a bit carried in from the next less significant stage.

Inputs Outputs
A B Cin Cout S
0 0 0 0 0
1 0 0 0 1
0 1 0 0 1
1 1 0 1 0
0 0 1 0 1
1 0 1 1 0
0 1 1 1 0
1 1 1 1 1

A full adder can be implemented in many different ways such as with a custom transistor-level circuit or composed of other gates.

One example implementationis ith S = A @ B @ i, a0d Gy = (4 B) +(Ciy - (A6 B))

Procedure: Refer to page 3

VHDL Code(using Structural Modelling):
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

33| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY fulladder_struct IS
port(Fx,Fy,Fcin: in std_logic;
Fsum,Fcarry : out std_logic);
END ENTITY fulladder_struct;
ARCHITECTURE struct OF fulladder_struct IS
signal s1,c1,c2:std_logic;
component HA port(A,B : in std_logic;
sum,carry : out std_logic)
end component;
BEGIN
ul: HA port map(Fx,Fy,sl,cl);
u2: HA port map(s1,Fcin,Fsum,c2);
Fcarry <=cl or c2;
END ARCHITECTURE struct;

Internal program Halfadder(HA):
LIBRARY ieee;
USE ieee.std_logic_1164.all,
USE ieee.std_logic_arith.all;
ENTITY HAIS
port(A,B : in std_logic;
sum,carry: out std_logic);

END ENTITY HA;
ARCHITECTURE dataflow OF HA IS
BEGIN

sum <= A xor B;

carry <= A and B;
END ARCHITECTURE dataflow;

force Fx 0 Ons,1 30ns

force Fy 0 Ons, 1 20ns,0 40ns, 1 60ns
force Fcin 0 Ons, 1 10ns,0 20ns,1 30ns,0 40ns,1 50ns,0 60ns,1 70ns
run 80ns

34| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

o [Fulladder_str

-
-
L
'
L
L
L

= 20 ns 40 ns &0 ns S0 ns

0]

Moy

Synthesis diagram:

in[0] ;
au
in[1] Fsum
. 1
Fcin D Inf1) out in[1]
s infn o Fearry

Instance: uz_ixd

in[1]

[[View: INTERFACE
A | Entiye AND2
in Litrary PRIMITIVES
Fx D [0] ibrany
Fv[o— |
out
i1

nclusion:

The VHDL code for full adder using Structural modeling is written, simulated and synthesized.

35| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 7(d)
DESIGN OF FULL ADDER

Aim: To write the VHDL code for Full adder, simulate and synthesize using Behavioral model.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :
A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit
full adder adds three one-bit numbers, often written as A, B, and Cin; A and B are the operands,

and Cin is a bit carried in from the next less significant stage.

Inputs | Ouiputs
Al B G| Cowt | =
oo 0] 0

S SN o R o Y
4 4Al0 0 A aln
4 4 440 00

0
0
1
0
1
1
1

= 0O0 < 0O <<

A full adder can be implemented in many different ways such as with a custom transistor-level circuit or composed of other gates.

One example implementation s with S = A @ B @ i, a0d Gy = (4 B) +(Ciy - (A6 B))

Procedure: Refer to page 3

VHDL Code(in Behavioural Modelling using if-then-else Statement):
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY fulladder_be IS
port(a: in std_logic;
b:in std_logic;
c :instd_logic;

36| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

sum : out std_logic;
carry : out std_logic);
END ENTITY fulladder_be;
ARCHITECTURE behav OF fulladder_be IS
BEGIN
process(a,b,c)
begin
if(a='0" and b="0"and c="0")
then sum <='0";carry <="'0";
elsif(a='0"and b="0"and c="1")
then sum <= "1";carry <="0";
elsif(a='0"and b="1"and c='0")
then sum <="1";carry <=0},
elsif(a='0"and b="1"and c="1")
then sum <= '0";carry <="1},
elsif(a="1"and b="0"and c¢='0")
then sum <= "1";carry <= 0},
elsif(a="1"and b="0"and c='1")
then sum <= '0";carry <="1},
elsif(a="1"and b="1"and ¢='0")
then sum <="0";carry <="1},
elsif(a="1"and b="1"and c="1")
then sum <= "1";carry <=1,
end if;
end process;
END ARCHITECTURE behav;

Simulation :

force a 0 Ons,1 40ns

force b 0 Ons,1 20ns,0 40ns,1 60ns

force ¢ 0 Ons,1 10ns,0 20ns,1 30ns,0 40ns,1 50ns,0 60ns,1 70ns
run 80ns

37| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

5 20 ns 40 ns &0 ns &0 ns

Synthesis diagram:

VHDL Code(in Behavioural Modelling style using Case Statement):

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY fulladder_behav_usingcase IS

port(a: in std_logic_vector(2 downto 0);

sum,carry :out std_logic);

END ENTITY fulladder_behav_usingcase;
ARCHITECTURE behav OF fulladder_behav_usingcase IS
BEGIN

process(a)

begin
case(a) is
when "000" =>sum<="0";carry<="0';
when "001" =>sum<="1";carry<="'0';

38| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

when "010" =>sum<="1";carry<='0',
when "011" =>sum<="0";carry<="1";
when "100" =>sum<="1";carry<="'0';
when "101" =>sum<="0";carry<="1";
when "110" =>sum<="0";carry<="1";
when "111" =>sum<="1";carry<="1",
when others=>sum<=Z";carry<="Z";
end case;
end process;
END ARCHITECTURE behav;

Simulation :
force a 000 Ons,001 10ns,010 20ns,011 30ns,100 40ns,101 50ns,110 60ns,111 70ns
run 80ns

Synthesis Diagram:

infd
inf1
inf1
. out in[1
a2 data[Z0] eq[7:0] o] inl0 ol carry
decoder_3

inf1

out in[1

infd i out sum

nclusion:

The VHDL code for full adder using Behavioral (if-then-else, case statement) modeling is
written, simulated and synthesized.

39| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 8(a)

DESIGN OF T-FLIPFLOP

Aim: To write the VHDL code for T-FLIPFLOP, simulate and synthesize using structural
model.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

T flip-flop

Ifthe T input is high, the T flip-flop changes state ("toggles”) whenever the clock input is strobed. If the T input is low. the flip-flop holds the previous
value. This behavior is described by the characteristic equation:

Qﬂmi =T Q = T§+ TQ (expanding the XOR operatar)

and can be described in a truth table:

T flip-flop operationZ®!
Characteristic table Excitation table

T Q| Qneze Comment Q| Cpest T| Comment
oo 0 hold state (no clk)| 0 0 0 | Mo change

01 1 hold state (no clk)| 1 1 0| Mo change
10 1 toggle 0 1 1 | Complement
1(1 0 toggle 1 0 1 | Complement

— 5_

A circuit symbol for
a T-type flip-flop

Procedure: Refer to page 3

VHDL code(in Behavioural Modelling using if-else statement):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

40| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

ENTITY tflipflop IS
port(t,clk: in std_logic;
g : inoutstd_logic:='0");
END ENTITY tflipflop;
ARCHITECTURE behav OF tflipflop IS
BEGIN
process(clk)
begin
q<=0%
if(clk'event and clk="1"then
if(t="1") then
q <=not(q);
else
q<=q;
end if;
end if;
end process;
END ARCHITECTURE behav;

imulation :
forcet 10ns

force clk 1 Ons,0 10ns,1 20ns,0 30ns,1 40ns,0 50ns,1 60ns,0 70ns,1 80ns
run 80ns

\> TEFlipFlapfclk

gim: /tflipflopsg @ 0 na

20 ns 40 ns &0 ns a0 ns

41| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Synthesis diagram:

in out

t| > CE
ck [! e

The VHDL code for T-flipflop is written in Behavioural Modelling(using if-else statement),
simulated and synthesized.

42| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 8(b)
DESIGN OF D-FLIPFLOP

Aim: To write the VHDL code for D-FLIPFLOP,simulate and synthesize using behavioural
model.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

D flip-flop
needed]

The D flip-flop is widely used. It is also known as a data or delay flip-flop.[c7=ton

The D flipflop captures the value of the D-input at a definite portion of the clock cycle (such as the rising edge of the clock). That captured value
becomes the Q output. At other times, the output Q does not change 2511281 The D flip-flop can be viewed as a memory cell, a zero-order hold, or a
delay line [citation nesded]

Truth table:
Clock |D | Qpext

Rising edge 0| 0
Rising edge|1| 1

O flip-flop symbol

Procedure: Refer to page 3

VHDL code (in Behavioural Modelling using if-else Statement):

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY dflipflop IS
port(d,clk :in std_logic;
g:out std_logic);
END ENTITY dflipflop;
ARCHITECTURE behav OF dflipflop IS

43 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

BEGIN
process(clk)
begin
if (clk'event and clk="1") then
q<=d
end if;
end process;
END ARCHITECTURE behav;

Simulation :
force d 1 Ons,0 20ns
force clk 1 Ons,0 10ns,1 20ns,0 30ns,1 40ns,0 50ns,1 60ns

run 70ns

nthesis diagram:

clk > >

Conclusion:

The VHDL code for T-flipflop is written in Behavioural Modelling(using if-else statement),
simulated and synthesized.

44 |Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 8(c)
DESIGN OF JK-FLIPFLOP

Aim: To write the VHDL code for JK-FLIPFLOP,simulate and synthesize using behavioral
model.

Tools Required:

1. FPG Advantage
i. Xilinx ISE 9.2

Theory :

JK latch

The JK latch is much less used than the JK flip-flop. The JK latch follows the following state table:

JK latch truth table
J K | Qpext Comment
00|a Mo change
010 Reset

110 |1 Set
111G Toggle

Hence, the JK latch is an SR latch that is made to foggle its output when passed the restricted combination of 11.

Procedure: Refer to page 3
VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY jkflipflop IS
port(s,r,j,k,clk : in std_logic;
qg: inout std_logic;

gn: out std_logic:="1";
END ENTITY jkflipflop;
ARCHITECTURE behav OF jkflipflop IS

BEGIN
process(s,r,clk)
begin
if(r="0"then q<="0");
elsif s='0' then g<="1";
45| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

elsif(clk="0"and clk'event) then
g<=(j and (not q)) or ((not k)and q);
end if;
end process;

gn <=not q;

END ARCHITECTURE behav;

simulation:

Force clk 1 0ns,0 10ns,1 20ns,0 30ns,1 40ns,0 50ns,1 60ns,0 70ns

Force r 0 Ons,1 50ns

Force s 1 Ons, 0 60ns

Force j 0 Ons,1 40ns

Force k 0 Ons,1 40ns

Run 80ns

» likflipflopjs -Mo Daka-

5 20 ns 40 ns 60 ns 80 ns
Cursar 1 a3 ns [

{ >on

|
::[1] ot _I_
clk [> in{>C)
in{>cout |—I

rC>

out in out
[

The VHDL code for JK Fliplop using behavioural modelling(using if-else) is written, simulated
and synthesized.

46 |Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

CYCLE -2

47 |Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 1
DESIGN RULES

im: To study the design rules of CMOS

Design rules are the communication link between the designer specifying requirements and the
fabricator who materializes them. Design rules are used to produce workable mask layouts from
which the various layers in silicon will be formed or patterned.

The object of a set of design rules is to allow a ready translation of circuit design concepts,
usually in stick diagram are symbolic form into actual geometry in silicon.

The first set of design rules are lambda based. These rules are straight forward and
relatively simple to occupy. They are real and chips can be fabricated from mask layout using the
lambda based rules set.

All paths in all layers will be dimensioned in lambda ‘A’ and subsequently lambda
can be allocated and appropriate value compatible with the feature size of the fabrication
process.

N well Design Rules:

r101 Minimum well size: 12 A

r102 Between wells: 12 A

rlol rlnz

r110 Minimum surface: 144)\?

mwell mwell
p subsirate
Diffusion Design Rules:
r201 Minimum N+ and P+ diffusion width : 4 A pelarioon 05
r202 Between two P+ and N+ diffusions : 4 & 203 200 | L
dliff ditf
r203 Extra nwell after P+ diffusion : 6 A £201 svvell

"204\\, 206
v
N
1'+E' P+ P+ polarization

r204 Between N+ diffusion and nwell : 6 A

r205 Border of well after N+ polarization 2 A

r206 Distance between Nwell and P+ polarization 6 A

48 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

r210 Minimum surface : 24)2

Polysilicon Design Rules:

r301 Polysilicon width : 2 A

r302 Polysilicon gate on diffusion: 2 A

r303 Polysilicon gate on diffusion for high voltage MOS:
4n

r304 Between two polysilicon boxes : 3 A

r305 Polysilicon vs. other diffusion : 2 A

r306 Diffusion after polysilicon : 4 &

r307 Extra gate after polysilicium : 3 A

r310 Minimum surface : 8 A2

2nd Polysilicon Design Rules

r311 Polysilicon2 width : 2 A 311 Polyv>

r312 Polysilicon2 gate on diffusion: 2 A

49 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Contact Design Rules

r401 Contact width : 2 A w404
402 .
r402 Between two contacts : 5 A KB
. A 401" contact polysilicium
r403 Extra diffusion over contact: 2 s
contact o e
. !
r404 Extra poly over contact: 2 A “LUE | H n
406 diffusior

metal

r405 Extra metal over contact; 2 A

r406 Distance between contact and poly gate: 3 A

Metal & Via Design Rules
ranl

r501 Metal width : 4 A

metal rinz metal

r502 Between two metals : 4 A “—

r510 Minimum surface : 32 A2

r601 Viawidth : 2 A 1604

r602 Between two Via: 5 A 602

. Stacked via over

metal? contact
when r603 is 0

contact .

r603 Between Via and contact:-0A

r604 Extra metal over via: 2 A

r605 Extra metal2 over via: 2 A

When r603=0, stacked via over contact is allowed

50| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Metal2 & Via2 Design Rules

r701 Metal width: 4 A

r702 Between two metal2 : 4 A

r710 Minimum surface ; 32 A2
r801 Via2 width : 2 A
804
r802 Between two Via2: 5 A K
802
r804 Extra metal2 over via2: 2 A H via2 .
>1-SU—1< Metal3
r805 Extra metal3 over via2: 2 A
901
Metal 3 & Via 3 Desigan Rules metald | 902 | metal
r901 Metal3 width: 4 A
r902 Between two metal3 : 4 A
r910 Minimum surface : 32 A2
ra04
N
ral2
ra0l Via3 width : 2 A []]
s viad |) fetal3 4

ra02 Between two Via3: 5 A ; w0l
ra04 Extra metal3 over via3: 2 A

ra05 Extra metal4 over via3: 2 A

51| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

rb01 Metal4d width: 4 A
rb02 Between two metal4 : 4 A

rb10Minimum surface : 32 A2

rcOl Viad width : 2 A
rc02 Between two Viad: 5 A
rc04 Extra metal4 over via2: 3 A

rcO5Extra metal5 over via2: 3 A

Metal 5 & Via 5 Design Rules

rd01 Metal5 width: 8 A
rd02 Between two metal5 : 8 A

rd10 Minimum surface : 100 A2

re01 Via5 width : 4 A
re02 Between two Via5: 6 A
re04 Extra metal5 over via5: 3 A

re05 Extra metal6 over via5: 3 A

52| Page

Sidhhartha Institute of Technology & Sciences

rb01

Metald rb02

Metald

rc02

P ‘\.Fia

+d01

+—>»
Metal> rd02

. - .

Viab
rell

rc04

Metald,5

Metald

re04 —P

1
Metalb,6

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Metal 6 Design Rules

rf0l

rf01 Metal6 width: 8 A S

Metalb 02 Metalb

rf02 Between two metal6 : 15 A

rf10 Minimum surface : 30012

Pad Design Rul

p03

rp01 Pad width: 100 pm

2
|, o

rp02 Between two pads 100 pum

rp03 Opening in passivation v.s via : Spm
rp04 Opening in passivation v.s metals: Sum

rp05SBetween pad and unrelated active area : 20 pm

53| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2
BASIC LOGIC GATEs

Aim: To design the digital schematics and corresponding layouts using CMOS logic for an
AND LOGIC gate, OR LOGIC gate, NOT LOGIC gate and check the lambda based rules
using DRC and verify its functionality.

Apparatus:

» DSCH2(logic editor & simulator)
» MICROWIND 3.1(layout editor & simulator)

Theory:

AND GateS: The AND gate is an electronic circuit that gives a high output (1) only if all its
inputs are high. A dot (.) is used to show the AND operation i.e. A.B.

2 Input AND gate
A B
0

—|=|olo|
—|o|=|ao|m

)
]
1
Procedure:

Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

Save the file and verify the functionality.

After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
Save the file and verify the lambda rules by using DRC, then verify the functionality.

P

Digital Schematic Representation:

- L

n
St

Nz

54| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

Transistor level design (CMOS lodic):

=2 Ol i Wh=2 0o

L=0.12u L=0.12u
L
in -

Sidhhartha Institute of Technology & Sciences

=2.0u
L=0.12u
1 -
ind
-
M=
N
m =1 0u outsy
L=0.1Z2u
-
m =100
L=0.12u

Timing Diagram:

55| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

s b

Simulation:

Voltage -Time:

clock1

8:24 PM
~ o
® O 9 005000

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an AND LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

56| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

OR LOGIC GATE

OR Gate:

The OR gate is an electronic circuit that gives a high output (1) if one or more of its inputs are
high. A plus (+) is used to show the OR operation.

2 Input OR gate
A, B A+B
1] 1] 1]
0 1 1
1 0 1
1 1 1
Pr re:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

2. Save the file and verify the functionality.
3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.

4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Digital Schematic Representation:

out

Transistor level design (CMOS logic):

57| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

® ww=20u
L=0.12u

=2 0u

| L=0.12u
#wW=2.0u "
L=0.12u

.- L
El‘lna q
I out3

=100 Wy=1.00 ® wy=1.0u
Ls0.12u L=0.12u L=0.12u

l E

L
T

Timing Diagram:

in2

in3

o3 x : i i !

S B B - o A

Semi-custom Layout:

58| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

(=8
+

Simulation:

Voltage —Time:

B Analog simulation of Example.msk

1.20

Sidhhartha Institute of Technology & Sciences

N
[=N

=+

clock1

00

1.20

clock2

120 - — v ’
7 / } 7 i
rn f / \ /
/ | { f / ‘
/| f ‘ P
noron Foo f | -
/ | { |
| \ \ \
P \ | \ | |
1.20
orop
0.0
0.0 02 06 08 1.0 12 14
Voltage vs. time /Voltages and currents jVoltage Frequ s time /Eye

Voltage-voltage:

59| Page

8:17 AM
2B ST 00

e-CAD&VLSI LAB

al

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

8:18 AM
- s 12
® 4 13 0002012

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an OR LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

NOT L OGI ATE

NOT Gate:

The NOT gate is an electronic circuit that produces an inverted version of the input at its output.
It is also known as an inverter. If the input variable is A, the inverted output is known as NOT A.
This is also shown as A', or A with a bar over the top.

NOT gate
Al A
0 1
1 0
Pr re:
1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.
2. Save the file and verify the functionality.
3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
4, Save the file and verify the lambda rules by using DRC, then verify the functionality.
60| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Digital Schematic Representation:

Transistor level design (CMOS logic):

=2 O
[Sh =1¥1

H]

Timing Diagram:

! : : : :
v N R 1 |
* 5 : 5 5

6l|Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

Semi-custom L ayout:

Juhmnnt o/p

LT

Voltage —Time:

Sidhhartha Institute of Technology & Sciences

Full-custom L avout:

62| Page

Time(ns:

08
1:17 PM
S e D 001002

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Voltage-Voltage:

A
c m ™

-' 1:18 PM

. - - S ® e om0

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an NOT LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

63| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2(b)
NAND LOGIC GATE

Aim: To design the digital schematics and corresponding layouts using CMOS logic for an
NAND LOGIC gate and NOR LOGIC gate check the lambda based rules using DRC and
verify its functionality.

Apparatus:

» DSCH2(logic editor & simulator)
» MICROWIND 3.1(layout editor & simulator)

THEORY:
NAND: This isa NOT-AND gate which is equal to an AND gate followed by a NOT gate. The

outputs of all NAND gates are high if any of the inputs are low. The symbol is an AND gate
with a small circle on the output. The small circle represents inversion

2 Input NAND gate
A | B AB

—|=|o|lo
= |O|=|O
O|l—=]|—=|—

Procedure:

Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

Save the file and verify the functionality.

After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
Save the file and verify the lambda rules by using DRC, then verify the functionality.

o=

Digital Schematic Representation:

in2

out2

in3

64| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Transistor level design (CMOS lodic):

R e [N | l WhW=12 O
=01 20 =0, 12u
L Ih
Ins
W= 00 [STH) =

Timing Diagram:

Semi-custom Layout:

65| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Full-Custom L ayvout:

Simulation:

Voltage —Time:

— 816PM
< W0 500002

The digital schematics and corresponding layouts using CMOS logic for an NAND LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

66| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual

NOR LOGIC GATE:

NOR Gate:

Sidhhartha Institute of Technology & Sciences

This is a NOT-OR gate which is equal to an OR gate followed by a NOT gate. The outputs of all
NOR gates are low if any of the inputs are high.The symbol is an OR gate with a small circle on

the output. The small circle represents inversion

Procedure:

el el

Digital Schematic Representation:

)

inz2

67| Page

2 Input NOR gate
A B A+B
o 0 1
o 1 0
1 0 0
1 1 0

]
outz2

Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

Save the file and verify the functionality.

After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
Save the file and verify the lambda rules by using DRC, then verify the functionality.

e-CAD&VLSI LAB

Sidhhartha Institute of Technology & Sciences

4 ECE- e-CAD & VLSI Lab manual

Transistor level design (CMOS lodic):

=2=.0u
O 12u

=2.0u
0. 120

iy
L=

out?

=1.0u
0. 12u

BT
L=

in=

T o0

L=0.12u

Timing Diagram:

||||||||||||||||||||||

||||||||||||||||||||||||

'
'
'
'
'
'
||||||||||||||||||||||
'
'
'
'
'
'
||||||||||||||||||||||||
v
'
'
'
'
'
'
'
'
'
'
'
it il il I el T-- -
'
'
'
[N] [—— [—
'
(=1 =} E2
)
L} o =
= = =

68| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

Semi-custom Layout:

Sidhhartha Institute of Technology & Sciences

" niglockT lelock? nor o/p-
Voltage —Time:
— I [T I I [I | T l I [I
| A . ‘ a \ |
| I | | . |
| | | | | | [
| | , | | I
00 | | | i | | |
L. WG Nois - ni e e

69| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Voltage-voltage:

Analog si
olp
1.20
1.10
1.00 o
0.90
0.80
070
0.60
0.50
0.40 »
0.30
0.20 B
0.10 —
il - clock1
oty 520 D
Start i} and currents }Voltage vs. voltage /Frequency vs time 4Eye diagram
i = F ™
N oW EISTFOEEN S e amh
Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an NOR LOGIC gate
are designed and the lambda based rules using DRC are checked and verified its functionality.

70| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 2(c)
EX-OR LOGIC GATE

Aim: To design the digital schematics and corresponding layouts using CMOS logic for an EX-
OR LOGIC gate, EX-NOR LOGIC gate and check the lambda based rules using DRC and
verify its functionality.

Apparatus:

» DSCH2(logic editor & simulator)
» MICROWIND 3.1(layout editor & simulator),

THEORY:

EX-OR: The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not
both, of its two inputs are high. An encircled plus sign () is used to show the EXOR operation.

2 Input EXOR gate
A B ABE
a

ey el P
—=|O|— (O

1
1
1]
Pr re:

Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

Save the file and verify the functionality.

After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
Save the file and verify the lambda rules by using DRC, then verify the functionality.

el N A

Digital Schematic Representation:

in3

Iout2

in<l

71| Page
e-CAD&VLSI LAB

Sidhhartha Institute of Technology & Sciences

4 ECE- e-CAD & VLSI Lab manual

Transistor level design (CMOS lodic):

in2

[

m.

r

Timing Di

||||||||||||||||||||||

||||||||||||||||||||||

\\\\\\\\\\\\\\\\\\\\\\

inf
in2

o

Semi-custom Lavout:

W

“nandop.

riclockl.

0 Dorop

ﬁﬁm'ckzﬁﬁﬁ

SRV

. Wese

SMss L L L

72| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Voltage —Time:

~ Analog of F:\sof 31 MSK

1.20

Voltage-voltage:

_Analog. of F: 31\ .MSK

The digital schematics and corresponding layouts using CMOS logic for an EX-OR LOGIC
gate are designed and the lambda based rules using DRC are checked and verified its
functionality.

73| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

EX-NOR LOGIC GATE:

ExX-NOR Gate:

The 'Exclusive-NOR' gate is a circuit which will give a high output if both of its inputs
are high or low. An encircled dot sign (.) is used to show the EXNOR operation.

A B [~ (a™h)
00 |1
01 |0
100
111

Procedure:

Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

Save the file and verify the functionality.

After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
Save the file and verify the lambda rules by using DRC, then verify the functionality.

el N A =

Digital Schematic Representation:

ini

oLt

inz2

74| Page
e-CAD&VLSI LAB

Sidhhartha Institute of Technology & Sciences

4 ECE- e-CAD & VLSI Lab manual

Transistor level design (CMOS lodic):

outd

in2

E int

Timing diagram:

—-—— == — - - — = — — = —|= - -

[ENNRY DS | S|

75| Page

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Semi-custom Layout:

e | —
L

ElE |

o B I Y I T " 3w
Bl
Vssl
Voltage —Time:
I i

o0 :n 5 1v o T :_- o 25 > O 25 .
Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an EX-NOR LOGIC
gate are designed and the lambda based rules using DRC are checked and verified its
functionality.

76 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 3
HALF ADDER

Aim: To design the digital schematics and corresponding layouts using CMOS logic for
HALF ADDER and check the lambda based rules using DRC and verify its functionality.

Apparatus:

» DSCH2(logic editor & simulator)
» MICROWIND 3.1(layout editor & simulator)

Theory:

The half adder adds two one-bit binary numbers A and B. It has two outputs, S and C

Input Output
AlB|C]|S
010|100
0 1 0 1
1 0|0 1
l 1 1 O
Truth table

Procedure:

1. Open the DSch2 tool and draw the schematic diagram as per the circuit drawn.

2. Save the file and verify the functionality.

3. After that open Microwind 3.1 tool and draw the layout diagram as per the circuit drawn.
4. Save the file and verify the lambda rules by using DRC, then verify the functionality.

Transistor level design (CMOS logic):

e

77 | Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

Timing Diagram:

Sidhhartha Institute of Technology & Sciences

Semi-custom Layout:

10 lambda

—
0.500m

Vas-

78| Page

Vas-

T g g

“op?

e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

Simulation:
Voltage —Time:

1.

AMJ L || L L L -

1.z

1.2

ERIGE BRI o szons >fo.sazns =0 e CIET LI 0.1 v
S 3 o = Aot Fins
4 ¥ PRty 4 e 1 F N] i ¥ Acd 18

806AM | |
. A W e o000

Conclusion:

The digital schematics and corresponding layouts using CMOS logic for an HALF ADDER are
designed and the lambda based rules using DRC

79| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences
Experiment 4

SPICE Simulation and a Coding of CMOS Inverter Circuit

Aim: To write SPICE code for CMOS Inverter Circuit, Simulate and verify functionality.

Apparatus:
1. PSPICE
i. DesignLab Eval8
Theory:

In CMOS, both p and n-channel transistors are used. A schematic circuit representation of the
CMOS inverter is shown in figure. The operation of the circuit on an inverter can be explained as
follows. All voltages are referenced with respect to Vss, the ground potential. When the input
voltage V, is zero, the gate of the p-channel transistor isat Vpp below the source potential,
that is, Ves=Vpp. This turns on the transistor, which is turned off since Vgs=0 for this transistor.
Now if the input voltage is raised to the threshold voltage level of the n-channel transistor raised
to Voo, the n-channel transistor will conduct while the p-channel transistor gets turned off,
discharging the load capacitance C to ground potential.

Pr re:

1. Start - program —>Design Lab Eval8 - select Design manager to get Design Manager
window

Click on Run Text Edit window to get microsim text editor

Type the program, save it with experiment name.

Then run pspice AD, to get pspice AD window.

Then go to file, click on open to select the saved file

The selected file is simulated successfully.

Go to file, click Run Probe to get microsim probe window.

Click on Add Trace, Deselect Currents and Aliased names and click on OK to view the
frequency response.

O N kW

80|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

CMOS Inverter:

(3) VDD
| B (25.8U/5.4U)
| M2/MP
|
F)
(1) (2)
i — e ®*— Vo
I 'N
I - M1/MMIN

(9.6U/5.4U)

(4) Vgs
Figure: CMOS Inverter:
PSPICE Code for CMOS Inverter:

*Pspice file for CMOS Inverter

*Filename="cmos.cir”

VIN10DC OV AC 1VOLT

VDD 30DC 2.5VOLT

VSS40DC-25VOLT

M12144NMOS1W=9.6U L=5.4U

M2 2133 PMOS1 W=25.8U L=5.4U

.MODEL NMOS1 NMOS VT0O=1.0 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=550 MJ=0.5 MJSW=0.5 CGS0O=0.4E-9 CGDO=0.4E-9
.MODEL PMOS1 PMOS VTO=-1.0 KP=15U

+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=200 MJ=0.5 MJSW=0.5 CGS0O=0.4E-9 CGDO=0.4E-9
.DC VIN -2.5 2.5 0.05

TFV() VIN

AC DEC 100 1HZ 100GHZ

.PROBE

.END

8l1|Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual Sidhhartha Institute of Technology & Sciences

CMOS Inverter Transfer function:

Figure: CMOS inverter transfer function

Conclusion:

The SPICE code for CMOS Inverter Circuit is written, simulated and the functionality is
verified.

82| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences
Experiment 5

SPICE Simulation of Basic Analog Circuit: Differential Amplifier

IM: To write SPICE code for Differential Amplifier, Simulate and verifyfunctionality.

Apparatus:
1. PSPICE

i. DesignLab Eval8

Theory:

Differential amplifiers are compatible with the matching properties of IC technology. The
differential amplifier has two modes of signal operation:

i. Differential mode,
ii. Common mode.

Differential amplifiers are excellent input stages for voltage amplifiers Differential amplifiers
can have different loads including:

Current mirrors
MOS diodes

Current sources/sinks
Resistors

The small signal performance of the differential amplifier is similar to the inverting amplifier in
gain, output resistance and bandwidth. The large signal performance includes slew rate and the
linearization of the transconductance. The design of CMOS analog circuits uses the relationships
of the circuit to design the dc currents and the W/L ratios of each transistor.

A differential amplifier is an amplifier that amplifies the difference between two voltages and
rejects the average or common mode value of the two voltages. Differential and common mode
voltages: v1 and v2 are called single-ended voltages. They are voltages referenced to ac ground.
The differential-mode input voltage, vID, is the voltage difference between vl and v2. The
common-mode input voltage, vIC, is the average value of v1 and v2 .

Procedure: refer to page 79

83| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLSI Lab manual

Circuit Diagram:
CMOS Differential Amplifier:

VbD
"01 'Dz¢
VG1" ——Vss Vgs —
\ o
V.
Vesi C
Iss
Vss

Sidhhartha Institute of Technology & Sciences

'fvgz - (10)
+
VIC <>+ EFVID2

VGs2 (2)

Figure: General MOS Differential Amplifier: (a) Schematic Diagram, (b) Input Gate Voltages

84| Page

Implementation.

e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

(3 VDD
" 1
M3 M4
- -y
Ww=25 8uU | (5) | w=25.8u
I=5.4u | | I=5.4u
I ¢ oy,
C*DIB=22{)UA ¢ D3 Ipg Y&
M1 [[$ M2 +
w=9_6u ¢D1 D2 w=9_6u
I=5.4u | =5 4u
IV Y : W,
vrﬁ’ S8 sS > v, o
51(1) | . | @ Vo2
o Ve /’ i
Vesi Ves2 1
lgg=220uA -
4@ |

- |M'5 | — - M5
w=21.6u w=21.6u
I=1.2u I=1.2u

4) Vssg

Figure: The Complete Differential Amplifier Schematic Diagram

PSPICE Code for CMOS Differential Amplifier:

* Filename="diffvid.cir"

* MOS Diff Amp with Current Mirror Load

*DC Transfer Characteristics vs VID

VID70DC OV AC 1V

E+110700.5

E-21070-0.5

VIC 10 0 DC 0.65V

VDD 30DC 2.5VOLT

VSS40DC-25VOLT
M15188NMOS1W=9.6U L=5.4U

M2 6 2 8 8 NMOS1 W=9.6U L=5.4U

M3 553 3PMOS1 W=25.8U L=5.4U

M4 65 3 3PMOS1 W=25.8U L=5.4U

M5 894 4 NMOS1 W=21.6U L=1.2U

M6 9 94 4 NMOS1 W=21.6U L=1.2U

IB 39 220UA

.MODEL NMOS1 NMOS VTO=1 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10
+ U0=550 MJ=0.5 MJSW=0.5 CGS0O=0.4E-9 CGDO=0.4E-9

85| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

MODEL PMOS1 PMOS VTO=-1 KP=15U

+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+U0=200 MJ=0.5 MISW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
.DC VID -2.5 2.5 0.05V

.TF V(6) VID

PROBE

END

CMOS Differential Amplifier Transfer function:

plifier]
Help NS
i
2._8u-
ou -
i
—2.8u-
i
T LT e et T el e -
-3 .6u -2 ._0u —1.08U ou 18U 2 _au 3.8V
=RITES
uID

The SPICE code for CMOS Differential Amplifier is written, simulated and the functionality is
verified.

86| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(a)

Analog Circuit Simulation (AC analysis) — Common Source Amplifier

Aim: To write SPICE code for Common Source Amplifier, Simulate and verify the
functionality.

Apparatus:
1. PSPICE
i. DesignLab Eval8
Theory:

A common Source amplifier is one of three basic single-stage MOSFET amplifier topologies,
typically used as a voltage or transconductance amplifier. The easiest way to tell if a MOSFET is
common source, common drain, or common gate is to examine where the signal enters and
leaves. The remaining terminal is what is known as “common”. The signal enters the gate, and
exits the drain. The only terminal is the source. This is a common-source MOSFET. The
analogous bipolar junction transistor circuit is the common-emitter amplifier.

The common-source (CS) amplifier may be viewed as a transconductance amplifier or as a
voltage amplifier. As a transconductance amplifier, the input voltage is seen as modulating the
current going to the load. As a voltage amplifier, input voltage modulates the amount of current
flowing through the mosfet, changing the voltage across the output resistance according to
Ohm’s law. However, the MOSFET device’s output resistance typically not high enough for a
reasonable transconductance amplifier (ideally infinite), nor low enough for a decent voltage
amplifier (ideally zero). Another major drawback is the amplifier’s limited high-frequency
response. Therefore, in practice the output often is routed through either a voltage follower
(common-drain stage), or a current follower (common-gate stage), or a current follower
(common-gate stage) to obtainmore output and frequency characteristics. The CS-CG
combination is called a cascade amplifier.

Procedure: refer to page 79

87| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

Common Source Amplifier:

(3) VDD
VDD
e ™ (25.8U/5.4U)
Vo | M2/MP
=
2
Vo .{}— Vo
IN
vi I vi (|
. M1 | - M1/MN
(9.6U/5.4U)
4)
— — Vss

PSPICE Code for CMOS Common Source Amplifier:

*PSpice file for NMOS Inverter with PMOS Current Load
*Filename="Lab3.cir"

VIN 10DC OVOLT AC 1V

VDD 30DC 25VOLT

VSS40DC-25VOLT

VG50DCOVOLT

M12144MNW=9.6U L=5.4U

M2 2533 MP W=25.8U L=5.4U

.MODEL MN NMOS VTO=1 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
.MODEL MP PMOS VTO=-1 KP=15U

+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
*Analysis

.DC VIN -2.5 2.5 0.05

TFV(2) VIN

.PROBE

.END

88| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

CMOS Common Source DC analysis:

-rQ MicroSim Probe - [CS51] (=13

I Edit Trace FPlok

[

e —

CMOS Common Source AC analysis:

Le=! MicroSim Probe - [CS51] =13

FI‘EiI.IEI'ICi

The PSPICE code for CMOS Common Source Amplifier is written, simulated (AC analysis) and
the functionality is verified.

89| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Experiment 6(b)

Analog Circuit Simulation (AC analysis) — Common Drain Amplifier

im: To write SPICE code for Common Drain Amplifier, Simulate and verify the functionality.

Apparatus:
1. PSPICE
ii. DesignLab Eval8
Theory:

A common-drain amplifier, also known as a source follower, is one of three basic single-stage
MOSFET amplifier topologies, typically used as a voltage buffer. In the circuit the gate terminal
of the transistor serves as the input, the source is the output, and the drain is common to both
(input and output), hence its name. The analogous bipolar junction transistor circuit is the
common-collector amplifier.

In addition, this circuit is used to transform impedances. For example, the Thévenin resistance of
a combination of a voltage follower driven by a voltage source with high Thévenin resistance is
reduced to only the output resistance of the voltage follower, a small resistance. That resistance
reduction makes the combination a more ideal voltage source. Conversely, a voltage follower
inserted between a driving stage and a high load (i.e. a low resistance) presents an infinite
resistance (low load) to the driving stage, an advantage in coupling a voltage signal to a large
load.

Procedure: refer to page 79

90| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Circuit Diagram:

Common Drain Amplifier:

VDD VDD
— . .
Vi | Vi | M1
M1
| N
Vo

— Vo VN +HAav ~
| M2 *
Vo | | AV
VTOk -

PSPICE Code for CMOS Differential Amplifier:

*PSpice file for NMOS Inverter with PMOS Current Load
*Filename="Lab3.cir"

VIN 10DC 4.75VOLT AC 1V

VDD 30 DC5VOLT

VSS40DCOVOLT

VG250DC 25VOLT

M13124MNW=9.6U L=5.4U

M2 2544 MN W=9.6U L=5.4U

.MODEL MN NMOS VTO=1 KP=40U

+ GAMMA=1.0 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=550 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
.MODEL MP PMOS VTO=-1 KP=15U

+ GAMMA=0.6 LAMBDA=0.02 PHI=0.6

+ TOX=0.05U LD=0.5U CJ=5E-4 CJSW=10E-10

+ U0=200 MJ=0.5 MJSW=0.5 CGSO=0.4E-9 CGDO=0.4E-9
*Analysis

.DCVINO050.05

TFV(2) VIN

AC DEC 100 1HZ 100GHZ

.PROBE

.END

91| Page
e-CAD&VLSI LAB

4 ECE- e-CAD & VLS| Lab manual Sidhhartha Institute of Technology & Sciences

Common Drain Amplifier DC analysis:

Les' MicroSim Probe - [commondrainamplifier1] E]

au
o UL2)

L' MicroSim Probe - [commondrainamplifier1]
El File di Trace Flot y Tools win w Help

mm | Fex| 22| | =) 75| a8 | =#

Freiuenci

Conclusion:

The PSPICE code for CMOS Common Drain Amplifier is written, simulated (AC analysis) and
the functionality is verified.

92| Page
e-CAD&VLSI LAB

